論文の概要: What Human-Horse Interactions may Teach us About Effective Human-AI Interactions
- arxiv url: http://arxiv.org/abs/2412.13405v1
- Date: Wed, 18 Dec 2024 00:39:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:23:28.186607
- Title: What Human-Horse Interactions may Teach us About Effective Human-AI Interactions
- Title(参考訳): 効果的な人間とAIのインタラクションについて学ぶ
- Authors: Mohammad Hossein Jarrahi, Stanley Ahalt,
- Abstract要約: 馬のようにAIは人間の能力を補うのではなく、補完すべきである、と私たちは主張する。
我々は、信頼、コミュニケーション、相互適応性といった、人間と馬の関係の重要な要素を分析する。
私たちは、信頼でき、適応可能で、共生的な人間とAIのパートナーシップを育むことができるAIシステムを設計するためのビジョンを提供します。
- 参考スコア(独自算出の注目度): 0.5893124686141781
- License:
- Abstract: This article explores human-horse interactions as a metaphor for understanding and designing effective human-AI partnerships. Drawing on the long history of human collaboration with horses, we propose that AI, like horses, should complement rather than replace human capabilities. We move beyond traditional benchmarks such as the Turing test, which emphasize AI's ability to mimic human intelligence, and instead advocate for a symbiotic relationship where distinct intelligences enhance each other. We analyze key elements of human-horse relationships: trust, communication, and mutual adaptability, to highlight essential principles for human-AI collaboration. Trust is critical in both partnerships, built through predictability and shared understanding, while communication and feedback loops foster mutual adaptability. We further discuss the importance of taming and habituation in shaping these interactions, likening it to how humans train AI to perform reliably and ethically in real-world settings. The article also addresses the asymmetry of responsibility, where humans ultimately bear the greater burden of oversight and ethical judgment. Finally, we emphasize that long-term commitment and continuous learning are vital in both human-horse and human-AI relationships, as ongoing interaction refines the partnership and increases mutual adaptability. By drawing on these insights from human-horse interactions, we offer a vision for designing AI systems that are trustworthy, adaptable, and capable of fostering symbiotic human-AI partnerships.
- Abstract(参考訳): 本稿では,効果的な人間-AI連携の理解と設計のメタファーとして,人間-馬の相互作用について考察する。
馬と人間のコラボレーションの長い歴史に基づいて、私たちは、馬のようにAIは人間の能力を置き換えるのではなく、補完すべきだと提案します。
我々は、人間の知性を模倣するAIの能力を強調するチューリングテストのような従来のベンチマークを超えて、異なる知能が互いに強化する共生関係を提唱する。
我々は、信頼、コミュニケーション、相互適応性といった、人間-AI関係の重要な要素を分析し、人間-AI協調に不可欠な原則を明らかにする。
信頼は、予測可能性と共通理解を通じて構築された、両方のパートナーシップにおいて重要なものであり、コミュニケーションとフィードバックループは相互適応性を促進する。
さらに、実際の環境でAIを確実に倫理的に動作させるために、人間がどのようにAIを訓練するかを例に、これらの相互作用を形作る上でのテーミングと習慣の重要性についても論じる。
記事はまた、人間が最終的に監視と倫理的判断の重荷を負うという、責任の非対称性についても論じている。
最後に、継続的な相互作用がパートナーシップを洗練させ、相互適応性を高めるため、人間と馬、人間とAIの関係において長期的なコミットメントと継続的な学習が不可欠であることを強調する。
これらの洞察を人間-馬の相互作用から導き出すことで、信頼でき、適応可能で、共生的な人間-AIパートナーシップを育むことができるAIシステムを設計するためのビジョンを提供します。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Enhancing Human Capabilities through Symbiotic Artificial Intelligence
with Shared Sensory Experiences [6.033393331015051]
我々は、共生人工知能と共有感覚体験(SAISSE)と呼ばれる人間とAIの相互作用における新しい概念を紹介する。
SAISSEは、共有感覚体験を通じて、AIシステムと人間のユーザ間の相互に有益な関係を確立することを目的としている。
本稿では,AIシステムとユーザの両方の長期的な成長と開発のためのメモリストレージユニットの導入について論じる。
論文 参考訳(メタデータ) (2023-05-26T04:13:59Z) - On the Effect of Information Asymmetry in Human-AI Teams [0.0]
我々は、人間とAIの相補的ポテンシャルの存在に焦点を当てる。
具体的には、情報非対称性を相補性ポテンシャルの必須源とみなす。
オンライン実験を行うことで、人間がそのような文脈情報を使ってAIの決定を調整できることを実証する。
論文 参考訳(メタデータ) (2022-05-03T13:02:50Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。