Toward an Insider Threat Education Platform: A Theoretical Literature Review
- URL: http://arxiv.org/abs/2412.13446v1
- Date: Wed, 18 Dec 2024 02:34:33 GMT
- Title: Toward an Insider Threat Education Platform: A Theoretical Literature Review
- Authors: Haywood Gelman, John D. Hastings, David Kenley, Eleanor Loiacono,
- Abstract summary: Insider threats (InTs) within organizations are small in number but have a disproportionate ability to damage systems, information, and infrastructure.
Existing InT research studies the problem from psychological, technical, and educational perspectives.
- Score: 0.0
- License:
- Abstract: Insider threats (InTs) within organizations are small in number but have a disproportionate ability to damage systems, information, and infrastructure. Existing InT research studies the problem from psychological, technical, and educational perspectives. Proposed theories include research on psychological indicators, machine learning, user behavioral log analysis, and educational methods to teach employees recognition and mitigation techniques. Because InTs are a human problem, training methods that address InT detection from a behavioral perspective are critical. While numerous technological and psychological theories exist on detection, prevention, and mitigation, few training methods prioritize psychological indicators. This literature review studied peer-reviewed, InT research organized by subtopic and extracted critical theories from psychological, technical, and educational disciplines. In doing so, this is the first study to comprehensively organize research across all three approaches in a manner which properly informs the development of an InT education platform.
Related papers
- Understanding Mental Health Content on Social Media and Its Effect Towards Suicidal Ideation [0.0]
The study details the application of these technologies in analyzing vast amounts of unstructured social media data to detect linguistic patterns.
It evaluates the real-world effectiveness, limitations, and ethical considerations of employing these technologies for suicide prevention.
arXiv Detail & Related papers (2025-01-16T05:46:27Z) - Intervention strategies for misinformation sharing on social media: A bibliometric analysis [1.8020166013859684]
Inaccurate shared information causes confusion, can adversely affect mental health, and can lead to mis-informed decision-making.
This study explores the typology of intervention strategies for addressing misinformation sharing on social media.
It identifies 4 important clusters - cognition-based, automated-based, information-based, and hybrid-based.
arXiv Detail & Related papers (2024-09-26T08:38:15Z) - DisTrack: a new Tool for Semi-automatic Misinformation Tracking in Online Social Networks [46.38614083502535]
DisTrack is designed to combat the spread of misinformation through a combination of Natural Language Processing (NLP) Social Network Analysis (SNA) and graph visualization.
The tool is tailored to capture and analyze the dynamic nature of misinformation spread in digital environments.
arXiv Detail & Related papers (2024-08-01T15:17:33Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - Decoding the Sociotechnical Dimensions of Digital Misinformation: A Comprehensive Literature Review [1.7478203318226313]
The review consists of 788 studies from SCOPUS, IEEE, and ACM digital libraries, synthesizing the primary research directions and sociotechnical challenges.
The mapping identifies issues related to the concept of misinformation, highlights deficiencies in mitigation strategies, discusses challenges in approaching stakeholders, and unveils various sociotechnical aspects relevant to understanding and mitigating the harmful effects of digital misinformation.
arXiv Detail & Related papers (2024-04-02T20:09:27Z) - Adversarial Attacks and Defenses in Fault Detection and Diagnosis: A Comprehensive Benchmark on the Tennessee Eastman Process [39.677420930301736]
Integrating machine learning into Automated Control Systems (ACS) enhances decision-making in industrial process management.
One of the limitations to the widespread adoption of these technologies is the vulnerability of neural networks to adversarial attacks.
This study explores the threats in deploying deep learning models for fault diagnosis in ACS using the Tennessee Eastman Process dataset.
arXiv Detail & Related papers (2024-03-20T10:59:06Z) - A Semantic Social Network Analysis Tool for Sensitivity Analysis and
What-If Scenario Testing in Alcohol Consumption Studies [42.29248343585333]
The tool described in this paper uses semantic knowledge representation techniques in order to facilitate this kind of sensitivity studies.
The base of the tool is a conceptual structure, called "ontology" that is able to represent the different concepts and their definitions.
arXiv Detail & Related papers (2024-02-14T16:17:04Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Beyond case studies: Teaching data science critique and ethics through sociotechnical surveillance studies [0.0]
Ethics have become an urgent concern for data science research, practice, and instruction in the wake of growing critique of algorithms and systems showing that they reinforce structural oppression.
We designed a data science ethics course that spoke to the social phenomena at the root of critical data studies through analysis of a pressing sociotechnical system: surveillance systems.
Students developed critical analysis skills that allowed them to investigate surveillance systems of their own and identify their benefits, harms, main proponents, those who resist them.
arXiv Detail & Related papers (2023-05-03T20:24:42Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn multiple tasks sequentially.
We study the effect of dropout, learning rate decay, and batch size, on forming training regimes that widen the tasks' local minima.
arXiv Detail & Related papers (2020-06-12T06:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.