Characterizing quantum state-space with a single quantum measurement
- URL: http://arxiv.org/abs/2412.13505v3
- Date: Fri, 04 Apr 2025 22:40:55 GMT
- Title: Characterizing quantum state-space with a single quantum measurement
- Authors: Matthew B. Weiss,
- Abstract summary: We show that quantum theory can be derived from studying the behavior of a single "reference" measuring device.<n>In this privileged case, each quantum state correspond to a probability-distribution over the outcomes of a single measurement.<n>We show how 3-designs allow the structure-coefficients of the Jordan algebra of observables to be extracted from the probabilities which characterize the reference measurement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can the state-space of $d$-dimensional quantum theory be derived from studying the behavior of a single "reference" measuring device? The answer is yes, if the measuring device corresponds to a complex-projective 3-design. In this privileged case, not only does each quantum state correspond to a probability-distribution over the outcomes of a single measurement, but also the probability-distributions which correspond to quantum states can be elegantly characterized as those which respect a generalized uncertainty principle. The latter takes the form of a lower-bound on the variance of a natural class of observables as measured by the reference. We give simple equations which pure-state probability distributions must satisfy, and contextualize these results by showing how 3-designs allow the structure-coefficients of the Jordan algebra of observables to be extracted from the probabilities which characterize the reference measurement itself. This lends credence to the view that quantum theory ought to be primarily understood as a set of normative constraints on probability assignments which reflect nature's lack of hidden variables, and further cements the significance of 3-designs in quantum information science.
Related papers
- Quantifying quantum-state texture [3.5732883784191865]
We introduce several potential quantum-state texture measure schemes.
We check whether they satisfy the three fundamental conditions required for a valid quantum-state texture measure.
arXiv Detail & Related papers (2025-04-25T08:29:16Z) - A decision-theoretic approach to dealing with uncertainty in quantum mechanics [42.166654559515244]
We provide a decision-theoretic framework for dealing with uncertainty in quantum mechanics.
We show that measurements play the role of acts with an uncertain outcome.
We discuss the mathematical implications of our findings.
arXiv Detail & Related papers (2025-03-26T14:53:06Z) - Quantum Probability Geometrically Realized in Projective Space [0.0]
This paper aims to pass all quantum probability formulas to the projective space associated to the complex Hilbert space of a given quantum system.
The upshot is that quantum theory is the probability theory of projective subspaces, or equivalently, of quantum events.
arXiv Detail & Related papers (2024-10-23T20:29:15Z) - Entropic uncertainty relations and entanglement detection from quantum
designs [5.928675196115795]
We investigate entropic uncertainty relations and entanglement detection with an emphasis on quantum measurements with design structures.
We derive improved R'enyi entropic uncertainty relations for design-structured measurements.
We obtain criteria for detecting multi-partite entanglement with design-structured measurements.
arXiv Detail & Related papers (2023-12-15T13:11:00Z) - A universal scheme to self-test any quantum state and extremal measurement [41.94295877935867]
quantum network considered in this work is the simple star network, which is implementable using current technologies.
For our purposes, we also construct a scheme that can be used to self-test the two-dimensional tomographically complete set of measurements with an arbitrary number of parties.
arXiv Detail & Related papers (2023-12-07T16:20:28Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - A Quantum Theory with Non-collapsing Measurements [0.0]
A collapse-free version of quantum theory is introduced to study the role of the projection postulate.
We assume "passive" measurements that do not update quantum states while measurement outcomes still occur probabilistically.
The resulting quantum-like theory has only one type of dynamics, namely unitary evolution.
arXiv Detail & Related papers (2023-03-23T16:32:29Z) - Is there a finite complete set of monotones in any quantum resource theory? [39.58317527488534]
We show that there does not exist a finite set of resource monotones which completely determines all state transformations.
We show that totally ordered theories allow for free transformations between all pure states.
arXiv Detail & Related papers (2022-12-05T18:28:36Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Probability's Algebraic Origin [0.0]
We show that quantum probabilities and classical probabilities have very different origins.
A transition probability that differs from 0 and 1 manifests the typical quantum indeterminacy.
It provides an unexpected access to these quantum probabilities that does not rely on states or wave functions.
arXiv Detail & Related papers (2020-09-17T18:19:41Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Cost of quantum entanglement simplified [13.683637401785505]
We introduce an entanglement measure that has a precise information-theoretic meaning as the exact cost required to prepare an entangled state.
Our results bring key insights into the fundamental entanglement structure of arbitrary quantum states, and they can be used directly to assess and quantify the entanglement produced in quantum-physical experiments.
arXiv Detail & Related papers (2020-07-28T14:36:23Z) - Resource theory of quantum coherence with probabilistically
non-distinguishable pointers and corresponding wave-particle duality [0.6882042556551611]
We study the resource theory of quantum coherence with respect to an arbitrary set of quantum state vectors.
We identify a class of measures of the quantum coherence, and in particular establish a monotonicity property of the measures.
We report a relation between quantum coherence and path complementary distinguishability in a double-slit set-up.
arXiv Detail & Related papers (2020-05-17T16:56:31Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Symmetric Informationally Complete Measurements Identify the Irreducible
Difference between Classical and Quantum Systems [0.0]
We describe a general procedure for associating a minimal informationally-complete quantum measurement (or MIC) with a set of linearly independent post-measurement quantum states.
We prove that the representation of the Born Rule obtained from a symmetric informationally-complete measurement (or SIC) minimizes this distinction in at least two senses.
arXiv Detail & Related papers (2018-05-22T16:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.