Suppression of Quantum Correlations in a Clean-Disordered Atom-Nanophotonic Interface
- URL: http://arxiv.org/abs/2412.13524v1
- Date: Wed, 18 Dec 2024 05:51:34 GMT
- Title: Suppression of Quantum Correlations in a Clean-Disordered Atom-Nanophotonic Interface
- Authors: I Gusti Ngurah Yudi Handayana, Yi-Lin Tsao, H. H. Jen,
- Abstract summary: We study the influence of clean system size on high-order quantum correlations in an atom-nanophotonic system.
Our results manifest distinct quantum correlations enabled by long-range interactions mediated by the waveguide.
- Score: 0.0
- License:
- Abstract: Quantum correlations are essential to the emergent behaviors of quantum systems, supporting key phenomena such as localization or delocalization of particles, quantum avalanches in many-body localized systems, and quantum information transfer. In open atom-nanophotonic systems characterized by long-range spin-exchange interactions, we examine the influence of clean system size on high-order quantum correlations among a clean-disordered atomic array with multiple atomic excitations. By initializing the system far from equilibrium, we observe a suppression of quantum correlations for localized atomic excitations in the disordered zone as the clean system size increases, showcasing the delocalization behavior in the high-order spin-exchange processes. The calculation of the entanglement entropy at the interface further substantiates this thermalizing effect. Our results manifest distinct quantum correlations enabled by long-range interactions mediated by the waveguide, enhance the theoretical comprehension of clean-disordered systems, and provide insights to nonequilibrium quantum dynamics in an atom-nanophotonic platform.
Related papers
- From angular coefficients to quantum observables: a phenomenological appraisal in di-boson systems [44.99833362998488]
Motivated by the growing interest in accessing the spin structure of multi-boson processes, we study polarisation and spin-correlation coefficients in di-boson systems.
We show that higher-order corrections of QCD and electroweak type, off-shell modelling, and realistic effects such as fiducial selections and neutrino reconstruction are unavoidable.
arXiv Detail & Related papers (2024-09-25T08:30:54Z) - Quantum Information Resources in Spin-1 Heisenberg Dimer Systems [0.0]
We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system.
We derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum resource metrics.
arXiv Detail & Related papers (2024-09-12T14:36:21Z) - Floquet interferometry of a dressed semiconductor quantum dot [0.7852714805965528]
We demonstrate state dressing in a semiconductor quantum dot tunnel-coupled to a charge reservoir.
We develop a theory based on the quantum dynamics of the Floquet ladder.
We show how the technique finds applications in the accurate electrostatic characterisation of semiconductor quantum dots.
arXiv Detail & Related papers (2024-07-19T12:20:30Z) - Observation of universal dissipative dynamics in strongly correlated
quantum gas [7.693218037362169]
We observe a universal dissipative dynamics in strongly correlated one-dimensional quantum gases.
This method could have broad applications in detecting strongly correlated features, including spin-charge separations and Fermi arcs in quantum materials.
arXiv Detail & Related papers (2023-09-19T02:32:02Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Quantum correlations of localized atomic excitations in a disordered
atomic chain [0.0]
Atom-waveguide interface mediates significant and long-range light-matter interactions.
We theoretically investigate the excitation localization of atomic excitations under strong position disorders.
arXiv Detail & Related papers (2021-10-21T08:49:08Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.