Quantum Information Resources in Spin-1 Heisenberg Dimer Systems
- URL: http://arxiv.org/abs/2409.08082v2
- Date: Thu, 30 Jan 2025 13:57:52 GMT
- Title: Quantum Information Resources in Spin-1 Heisenberg Dimer Systems
- Authors: Fadwa Benabdallah, M. Y. Abd-Rabbou, Mohammed Daoud, Saeed Haddadi,
- Abstract summary: We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system.
We derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum resource metrics.
- Score: 0.0
- License:
- Abstract: We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system, considering some interesting factors such as the $l_{1}$-norm of quantum coherence, relative coherence, negativity, and steering, influenced by the magnetic field and uniaxial single-ion anisotropy. Through a thorough investigation, we derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum resource metrics. Our results unveil the system's behavior at absolute zero temperature. We further observe temperature's role in transitioning the system towards classical states, impacting coherence, entanglement, and steering differently. Notably, we find that increasing the exchange anisotropy parameter can reinforce quantum correlations while adjusting the uniaxial single-ion anisotropy influences the system's quantumness, particularly when it is positive. Some recommendations to maximize quantum coherence, entanglement, and steering involve temperature reduction, increasing the exchange anisotropy parameter, and carefully managing the magnetic field and uniaxial single-ion anisotropy parameter, highlighting the intricate interplay between these factors in maintaining the system's quantum properties.
Related papers
- Suppression of Quantum Correlations in a Clean-Disordered Atom-Nanophotonic Interface [0.0]
We study the influence of clean system size on high-order quantum correlations in an atom-nanophotonic system.
Our results manifest distinct quantum correlations enabled by long-range interactions mediated by the waveguide.
arXiv Detail & Related papers (2024-12-18T05:51:34Z) - Probing nonlocal correlations in magnetic rare-earth clusters [0.0]
We study rare-earth spin complexes and their unique magnetic properties.
Our analysis reveals a one-to-one correspondence between structures in the differential conductance profiles.
Distinct braiding patterns in the conductance profiles are shown to correspond to stepwise changes in the entanglement entropy.
arXiv Detail & Related papers (2024-12-01T03:43:30Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric quantum discord and coherence in a dipolar interacting
magnetic system [0.0]
This work explores the effect of the quantum-level crossing, induced by the magnetic anisotropies of dipolar interacting systems, on the quantum discord and coherence of the system.
The results show that, while the quantum discord has a clear signature of the quantum level-crossing, the basis dependence of the quantum coherence hides the crossover regarding the measured basis.
arXiv Detail & Related papers (2023-01-07T16:45:17Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Fisher information and skew information correlations in dipolar
spin system [1.5630592429258865]
Quantum Fisher information (QFI) and skew information (SI) plays a key role in the quantum resource theory.
We consider a pair ofspin-1/2 particles coupled with dipolar and Dzyaloshinsky-Moriya (DM) interactions, serving as the physical carrier of quantum information.
arXiv Detail & Related papers (2020-11-11T16:18:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.