A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning
- URL: http://arxiv.org/abs/2305.10212v1
- Date: Wed, 17 May 2023 13:44:25 GMT
- Title: A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning
- Authors: Joseph Lindsay, Ramtin Zand
- Abstract summary: Works in quantum machine learning (QML) over the past few years indicate that QML algorithms can function just as well as their classical counterparts.
This work aims to elucidate if it is possible to achieve some of QML's major reported benefits on classical machines by incorporating itsity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Works in quantum machine learning (QML) over the past few years indicate that
QML algorithms can function just as well as their classical counterparts, and
even outperform them in some cases. Among the corpus of recent work, many
current QML models take advantage of variational quantum algorithm (VQA)
circuits, given that their scale is typically small enough to be compatible
with NISQ devices and the method of automatic differentiation for optimizing
circuit parameters is familiar to machine learning (ML). While the results bear
interesting promise for an era when quantum machines are more readily
accessible, if one can achieve similar results through non-quantum methods then
there may be a more near-term advantage available to practitioners. To this
end, the nature of this work is to investigate the utilization of stochastic
methods inspired by a variational quantum version of the long short-term memory
(LSTM) model in an attempt to approach the reported successes in performance
and rapid convergence. By analyzing the performance of classical, stochastic,
and quantum methods, this work aims to elucidate if it is possible to achieve
some of QML's major reported benefits on classical machines by incorporating
aspects of its stochasticity.
Related papers
- Learning to Measure Quantum Neural Networks [10.617463958884528]
We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.
Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.
Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
arXiv Detail & Related papers (2025-01-10T02:28:19Z) - Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities [36.437593835024394]
We introduce a unified framework, ourframework, for evaluating QML models in the context of LogAD.
State-of-the-art methods such as DeepLog, LogAnomaly, and LogRobust are included in our framework.
Our evaluation extends to factors critical to QML performance, such as specificity, the number of circuits, circuit design, and quantum state encoding.
arXiv Detail & Related papers (2024-12-18T06:13:49Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
We present the Quantum Kernel-Based Long short-memory (QK-LSTM) network, which integrates quantum kernel methods into classical LSTM architectures.
QK-LSTM captures intricate nonlinear dependencies and temporal dynamics with fewer trainable parameters.
arXiv Detail & Related papers (2024-12-12T01:16:52Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the LDA technique.
Current quantum computers are noisy and have few qubits to test, making it difficult to demonstrate the current and potential quantum advantage of QML methods.
arXiv Detail & Related papers (2022-08-28T16:58:37Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum Long Short-Term Memory [3.675884635364471]
Long short-term memory (LSTM) is a recurrent neural network (RNN) for sequence and temporal dependency data modeling.
We propose a hybrid quantum-classical model of LSTM, which we dub QLSTM.
Our work paves the way toward implementing machine learning algorithms for sequence modeling on noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2020-09-03T16:41:09Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.