QuLTSF: Long-Term Time Series Forecasting with Quantum Machine Learning
- URL: http://arxiv.org/abs/2412.13769v1
- Date: Wed, 18 Dec 2024 12:06:52 GMT
- Title: QuLTSF: Long-Term Time Series Forecasting with Quantum Machine Learning
- Authors: Hari Hara Suthan Chittoor, Paul Robert Griffin, Ariel Neufeld, Jayne Thompson, Mile Gu,
- Abstract summary: Long-term time series forecasting involves predicting a large number of future values of a time series based on the past values.
Recent quantum machine learning (QML) is evolving as a domain to enhance the capabilities of classical machine learning models.
We show the advantages of QuLTSF over the state-of-the-art classical linear models, in terms of reduced mean squared error and mean absolute error.
- Score: 4.2117721107606005
- License:
- Abstract: Long-term time series forecasting (LTSF) involves predicting a large number of future values of a time series based on the past values and is an essential task in a wide range of domains including weather forecasting, stock market analysis, disease outbreak prediction. Over the decades LTSF algorithms have transitioned from statistical models to deep learning models like transformer models. Despite the complex architecture of transformer based LTSF models `Are Transformers Effective for Time Series Forecasting? (Zeng et al., 2023)' showed that simple linear models can outperform the state-of-the-art transformer based LTSF models. Recently, quantum machine learning (QML) is evolving as a domain to enhance the capabilities of classical machine learning models. In this paper we initiate the application of QML to LTSF problems by proposing QuLTSF, a simple hybrid QML model for multivariate LTSF. Through extensive experiments on a widely used weather dataset we show the advantages of QuLTSF over the state-of-the-art classical linear models, in terms of reduced mean squared error and mean absolute error.
Related papers
- xLSTMTime : Long-term Time Series Forecasting With xLSTM [0.0]
This paper presents an adaptation of a recent architecture termed extended LSTM (xLSTM) for time series forecasting.
We compare xLSTMTime's performance against various state-of-the-art models across multiple real-world da-tasets.
Our findings suggest that refined recurrent architectures can offer competitive alternatives to transformer-based models in time series forecasting.
arXiv Detail & Related papers (2024-07-14T15:15:00Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - Unlocking the Power of Patch: Patch-Based MLP for Long-Term Time Series Forecasting [0.0]
Recent studies have attempted to refine the Transformer architecture to demonstrate its effectiveness in Long-Term Time Series Forecasting tasks.
We attribute the effectiveness of these models largely to the adopted Patch mechanism.
We propose a novel and simple Patch-based components (PatchMLP) for LTSF tasks.
arXiv Detail & Related papers (2024-05-22T12:12:20Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Transformers versus LSTMs for electronic trading [0.0]
This study investigates whether Transformer-based model can be applied in financial time series prediction and beat LSTM.
A new LSTM-based model called DLSTM is built and new architecture for the Transformer-based model is designed to adapt for financial prediction.
The experiment result reflects that the Transformer-based model only has the limited advantage in absolute price sequence prediction.
arXiv Detail & Related papers (2023-09-20T15:25:43Z) - Client: Cross-variable Linear Integrated Enhanced Transformer for
Multivariate Long-Term Time Series Forecasting [4.004869317957185]
"Cross-variable Linear Integrated ENhanced Transformer for Multivariable Long-Term Time Series Forecasting" (Client) is an advanced model that outperforms both traditional Transformer-based models and linear models.
Client incorporates non-linearity and cross-variable dependencies, which sets it apart from conventional linear models and Transformer-based models.
arXiv Detail & Related papers (2023-05-30T08:31:22Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
Long-term time-series forecasting (LTSF) plays a crucial role in various practical applications.
Existing Transformer-based models, such as Fedformer and Informer, often achieve their best performances on validation sets after just a few epochs.
We propose a novel approach to address this issue by employing curriculum learning and introducing a memory-driven decoder.
arXiv Detail & Related papers (2022-07-16T04:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.