論文の概要: Graph Coarsening via Supervised Granular-Ball for Scalable Graph Neural Network Training
- arxiv url: http://arxiv.org/abs/2412.13842v1
- Date: Wed, 18 Dec 2024 13:36:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:23:37.019514
- Title: Graph Coarsening via Supervised Granular-Ball for Scalable Graph Neural Network Training
- Title(参考訳): スケーラブルなグラフニューラルネットワークトレーニングのためのグラニュラーボールによるグラフ粗大化
- Authors: Shuyin Xia, Xinjun Ma, Zhiyuan Liu, Cheng Liu, Sen Zhao, Guoyin Wang,
- Abstract要約: グラフデータを効果的に圧縮するために粒度計算を用いる。
我々は、純度閾値に基づいてグラフをグラニュラーボールに繰り返し分割することにより、粗いグラフネットワークを構築する。
我々のアルゴリズムは、予め定義された粗大化率を必要とせずに、スプリッティングを適応的に行うことができる。
- 参考スコア(独自算出の注目度): 30.354103857690777
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated significant achievements in processing graph data, yet scalability remains a substantial challenge. To address this, numerous graph coarsening methods have been developed. However, most existing coarsening methods are training-dependent, leading to lower efficiency, and they all require a predefined coarsening rate, lacking an adaptive approach. In this paper, we employ granular-ball computing to effectively compress graph data. We construct a coarsened graph network by iteratively splitting the graph into granular-balls based on a purity threshold and using these granular-balls as super vertices. This granulation process significantly reduces the size of the original graph, thereby greatly enhancing the training efficiency and scalability of GNNs. Additionally, our algorithm can adaptively perform splitting without requiring a predefined coarsening rate. Experimental results demonstrate that our method achieves accuracy comparable to training on the original graph. Noise injection experiments further indicate that our method exhibits robust performance. Moreover, our approach can reduce the graph size by up to 20 times without compromising test accuracy, substantially enhancing the scalability of GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はグラフデータの処理において大きな成果を上げているが、スケーラビリティは依然として大きな課題である。
これを解決するために,多数のグラフ粗化手法が開発されている。
しかし、既存の粗大化法の多くは訓練に依存しており、効率が低下し、全ては事前定義された粗大化率を必要とし、適応的なアプローチが欠如している。
本稿では,グラフデータを効果的に圧縮するために粒度計算を用いる。
我々は、純度閾値に基づいてグラフをグラニュラーボールに反復的に分割し、これらのグラニュラーボールを超頂点として、粗いグラフネットワークを構築する。
このグラニュレーションプロセスにより、元のグラフのサイズが大幅に削減され、GNNのトレーニング効率とスケーラビリティが大幅に向上する。
さらに,提案アルゴリズムは,事前定義された粗大化率を必要とせずにスプリッティングを適応的に行うことができる。
実験の結果,本手法は元のグラフのトレーニングに匹敵する精度を達成できた。
さらにノイズ注入実験により,本手法が頑健な性能を示すことを示す。
さらに,テスト精度を損なうことなく,グラフサイズを最大20倍に削減し,GNNのスケーラビリティを大幅に向上させることができる。
関連論文リスト
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
粗い手法はグラフを小さくするために使われ、計算が高速化される。
これまでの調査では、推論中にコストに対処できなかった。
本稿では, サブグラフベース手法によるGNNのスケーラビリティ向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-19T06:27:24Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
グラフ計算のための特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク(GNN)であるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、機能の結果を選択して再利用することでオーバーヘッドを減らします。
利用可能な最大10億のGNNデータセットであるPapers100M(1110万ノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
論文 参考訳(メタデータ) (2022-07-19T10:32:11Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。