Navigating limitations with precision: A fine-grained ensemble approach to wrist pathology recognition on a limited x-ray dataset
- URL: http://arxiv.org/abs/2412.13884v1
- Date: Wed, 18 Dec 2024 14:23:54 GMT
- Title: Navigating limitations with precision: A fine-grained ensemble approach to wrist pathology recognition on a limited x-ray dataset
- Authors: Ammar Ahmed, Ali Shariq Imran, Mohib Ullah, Zenun Kastrati, Sher Muhammad Daudpota,
- Abstract summary: This study tackles wrist pathology recognition as a fine-grained visual recognition problem.
We introduce a specialized FGVR-based ensemble approach to identify discriminative regions within X-rays.
We employ an Explainable AI (XAI) technique called Grad-CAM to pinpoint these regions.
- Score: 4.653005379506948
- License:
- Abstract: The exploration of automated wrist fracture recognition has gained considerable research attention in recent years. In practical medical scenarios, physicians and surgeons may lack the specialized expertise required for accurate X-ray interpretation, highlighting the need for machine vision to enhance diagnostic accuracy. However, conventional recognition techniques face challenges in discerning subtle differences in X-rays when classifying wrist pathologies, as many of these pathologies, such as fractures, can be small and hard to distinguish. This study tackles wrist pathology recognition as a fine-grained visual recognition (FGVR) problem, utilizing a limited, custom-curated dataset that mirrors real-world medical constraints, relying solely on image-level annotations. We introduce a specialized FGVR-based ensemble approach to identify discriminative regions within X-rays. We employ an Explainable AI (XAI) technique called Grad-CAM to pinpoint these regions. Our ensemble approach outperformed many conventional SOTA and FGVR techniques, underscoring the effectiveness of our strategy in enhancing accuracy in wrist pathology recognition.
Related papers
- Anatomy-Guided Radiology Report Generation with Pathology-Aware Regional Prompts [3.1019279528120363]
Radiology reporting generative AI holds significant potential to alleviate clinical workloads and streamline medical care.
Existing systems often fall short due to their reliance on fixed size, patch-level image features and insufficient incorporation of pathological information.
We propose an innovative approach that leverages pathology-aware regional prompts to explicitly integrate anatomical and pathological information of various scales.
arXiv Detail & Related papers (2024-11-16T12:36:20Z) - Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset [4.391219238034502]
Wrist pathologies, particularly fractures common among children and adolescents, present a critical diagnostic challenge.
Recent advancements in deep convolutional neural networks offer promise in automating pathology detection in trauma X-rays.
Traditional manual annotation, though effective, is laborious, costly, and requires specialized expertise.
We propose a fine-grained approach, aimed at automatically identifying discriminative regions in X-rays without manual intervention.
arXiv Detail & Related papers (2024-08-24T10:14:52Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
arXiv Detail & Related papers (2024-05-22T06:10:54Z) - Towards Universal Unsupervised Anomaly Detection in Medical Imaging [13.161402789616004]
We present a novel unsupervised anomaly detection approach, termed textitReversed Auto-Encoders (RA), designed to create realistic pseudo-healthy reconstructions.
We evaluate the proposed method across various imaging modalities, including magnetic resonance imaging (MRI) of the brain, pediatric wrist X-ray, and chest X-ray.
Our unsupervised anomaly detection approach may enhance diagnostic accuracy in medical imaging by identifying a broader range of unknown pathologies.
arXiv Detail & Related papers (2024-01-19T11:35:07Z) - Expert Uncertainty and Severity Aware Chest X-Ray Classification by
Multi-Relationship Graph Learning [48.29204631769816]
We re-extract disease labels from CXR reports to make them more realistic by considering disease severity and uncertainty in classification.
Our experimental results show that models considering disease severity and uncertainty outperform previous state-of-the-art methods.
arXiv Detail & Related papers (2023-09-06T19:19:41Z) - Anatomy-Driven Pathology Detection on Chest X-rays [17.670821896026137]
We propose anatomy-driven pathology detection (ADPD), which uses easy-to-annotate bounding boxes of anatomical regions as proxies for pathologies.
We study two training approaches: supervised training using anatomy-level pathology labels and multiple instance learning (MIL) with image-level pathology labels.
Our results show that our anatomy-level training approach outperforms weakly supervised methods and fully supervised detection with limited training samples.
arXiv Detail & Related papers (2023-09-05T20:58:15Z) - DeepLOC: Deep Learning-based Bone Pathology Localization and
Classification in Wrist X-ray Images [1.45543311565555]
This paper presents a novel approach for bone pathology localization and classification in wrist X-ray images.
The proposed methodology addresses two critical challenges in wrist X-ray analysis: accurate localization of bone pathologies and precise classification of abnormalities.
arXiv Detail & Related papers (2023-08-24T12:06:10Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.