Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning
- URL: http://arxiv.org/abs/2405.13370v1
- Date: Wed, 22 May 2024 06:10:54 GMT
- Title: Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning
- Authors: Yasmeena Akhter, Rishabh Ranjan, Richa Singh, Mayank Vatsa,
- Abstract summary: This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
- Score: 46.75992018094998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions, a common limitation in resource-constrained healthcare settings. High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities. However, when images are downsized for processing in Computer-Aided Diagnosis (CAD) systems, vital spatial details and receptive fields are lost, hampering diagnosis accuracy. To address this, this paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method. This approach leverages the self-attention mechanism of Vision Transformers (ViT) to transfer critical diagnostic knowledge from high-resolution images to enhance the diagnostic efficacy of low-resolution CXRs. MLCAK incorporates local pathological findings to boost model explainability, enabling more accurate global predictions in a multi-task framework tailored for low-resolution CXR analysis. Our research, utilizing the Vindr CXR dataset, shows a considerable enhancement in the ability to diagnose diseases from low-resolution images (e.g. 28 x 28), suggesting a critical transition from the traditional reliance on high-resolution imaging (e.g. 224 x 224).
Related papers
- A foundation model for generalizable disease diagnosis in chest X-ray images [40.9095393430871]
We introduce CXRBase, a foundational model designed to learn versatile representations from unlabelled CXR images.
CXRBase is trained on a substantial dataset of 1.04 million unlabelled CXR images.
It is fine-tuned with labeled data to enhance its performance in disease detection.
arXiv Detail & Related papers (2024-10-11T14:41:27Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Unsupervised Iterative U-Net with an Internal Guidance Layer for
Vertebrae Contrast Enhancement in Chest X-Ray Images [1.521162809610347]
We propose a novel and robust approach to improve the quality of X-ray images by iteratively training a deep neural network.
Our framework includes an embedded internal guidance layer that enhances the fine structures of spinal vertebrae in chest X-ray images.
Experimental results demonstrate that our proposed method surpasses existing detail enhancement methods in terms of BRISQUE scores.
arXiv Detail & Related papers (2023-06-06T19:36:11Z) - Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis [13.31017458409054]
We propose a deep spatial pyramid pooling (D-SPP) module to integrate contextual information over different resolutions.
We also propose a COVID-19 infection detection (CID) module to draw attention to the lesion area and remove interference from irrelevant information.
Our method produces higher accuracy of detecting COVID-19 lesions in CT and CXR images.
arXiv Detail & Related papers (2022-07-04T12:07:17Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.