Demographic-aware fine-grained classification of pediatric wrist fractures
- URL: http://arxiv.org/abs/2507.12964v2
- Date: Fri, 18 Jul 2025 11:16:14 GMT
- Title: Demographic-aware fine-grained classification of pediatric wrist fractures
- Authors: Ammar Ahmed, Ali Shariq Imran, Zenun Kastrati, Sher Muhammad Daudpota,
- Abstract summary: Wrist pathologies are frequently observed, particularly among children who constitute the majority of fracture cases.<n>Computer vision presents a promising avenue, contingent upon the availability of extensive datasets.<n>We employ a multifaceted approach to address the challenge of recognizing wrist pathologies using an extremely limited dataset.
- Score: 3.4384440967420185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wrist pathologies are frequently observed, particularly among children who constitute the majority of fracture cases. However, diagnosing these conditions is time-consuming and requires specialized expertise. Computer vision presents a promising avenue, contingent upon the availability of extensive datasets, a notable challenge in medical imaging. Therefore, reliance solely on one modality, such as images, proves inadequate, especially in an era of diverse and plentiful data types. In this study, we employ a multifaceted approach to address the challenge of recognizing wrist pathologies using an extremely limited dataset. Initially, we approach the problem as a fine-grained recognition task, aiming to identify subtle X-ray pathologies that conventional CNNs overlook. Secondly, we enhance network performance by fusing patient metadata with X-ray images. Thirdly, rather than pre-training on a coarse-grained dataset like ImageNet, we utilize weights trained on a fine-grained dataset. While metadata integration has been used in other medical domains, this is a novel application for wrist pathologies. Our results show that a fine-grained strategy and metadata integration improve diagnostic accuracy by 2% with a limited dataset and by over 10% with a larger fracture-focused dataset.
Related papers
- Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs [0.0]
Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs.
This study aims to automate SI identification from radiographs using machine learning algorithms.
arXiv Detail & Related papers (2024-11-22T08:44:43Z) - Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset [4.391219238034502]
Wrist pathologies, particularly fractures common among children and adolescents, present a critical diagnostic challenge.
Recent advancements in deep convolutional neural networks offer promise in automating pathology detection in trauma X-rays.
Traditional manual annotation, though effective, is laborious, costly, and requires specialized expertise.
We propose a fine-grained approach, aimed at automatically identifying discriminative regions in X-rays without manual intervention.
arXiv Detail & Related papers (2024-08-24T10:14:52Z) - MedIAnomaly: A comparative study of anomaly detection in medical images [26.319602363581442]
Anomaly detection (AD) aims at detecting abnormal samples that deviate from the expected normal patterns.<n>Despite the emergence of numerous methods for medical AD, the lack of a fair and comprehensive evaluation causes ambiguous conclusions.<n>This paper builds a benchmark with unified comparison to address this problem.
arXiv Detail & Related papers (2024-04-06T06:18:11Z) - Is in-domain data beneficial in transfer learning for landmarks
detection in x-ray images? [1.5348047288817481]
We study whether the usage of small-scale in-domain x-ray image datasets may provide any improvement for landmark detection over models pre-trained on large natural image datasets only.
Our results show that using in-domain source datasets brings marginal or no benefit with respect to an ImageNet out-of-domain pre-training.
Our findings can provide an indication for the development of robust landmark detection systems in medical images when no large annotated dataset is available.
arXiv Detail & Related papers (2024-03-03T10:35:00Z) - Rescuing referral failures during automated diagnosis of domain-shifted
medical images [17.349847762608086]
We show that even state-of-the-art domain generalization approaches fail severely during referral when tested on medical images acquired from a different demographic or using a different technology.
We evaluate novel combinations of robust generalization and post hoc referral approaches, that rescue these failures and achieve significant performance improvements.
arXiv Detail & Related papers (2023-11-28T13:14:55Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.