論文の概要: Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model
- arxiv url: http://arxiv.org/abs/2412.13897v1
- Date: Wed, 18 Dec 2024 14:39:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:43.858923
- Title: Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model
- Title(参考訳): SciML基礎モデルによるニューラルネットワークの効率的推論
- Authors: Yuqiu Liu, Jingxuan Xu, Mauricio Soroco, Yunchao Wei, Wuyang Chen,
- Abstract要約: 本研究では,SciML基礎モデルにより,現実の3次元流体力学を推定する際のデータ効率を大幅に向上できることを示す。
基礎モデルから抽出した拡張ビューと流体特徴を利用した新しい協調学習手法をニューラルネットワークに装備する。
- 参考スコア(独自算出の注目度): 49.06911227670408
- License:
- Abstract: Recent developments in 3D vision have enabled successful progress in inferring neural fluid fields and realistic rendering of fluid dynamics. However, these methods require real-world flow captures, which demand dense video sequences and specialized lab setups, making the process costly and challenging. Scientific machine learning (SciML) foundation models, which are pretrained on extensive simulations of partial differential equations (PDEs), encode rich multiphysics knowledge and thus provide promising sources of domain priors for inferring fluid fields. Nevertheless, their potential to advance real-world vision problems remains largely underexplored, raising questions about the transferability and practical utility of these foundation models. In this work, we demonstrate that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization. At the core of our method is leveraging the strong forecasting capabilities and meaningful representations of SciML foundation models. We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model. Our method demonstrates significant improvements in both quantitative metrics and visual quality, showcasing the practical applicability of SciML foundation models in real-world fluid dynamics.
- Abstract(参考訳): 近年の3次元視覚の発達により、神経流体場の推定と流体力学の現実的なレンダリングが成功している。
しかし、これらの手法は、高密度なビデオシーケンスと特殊な実験室のセットアップを必要とする現実世界のフローキャプチャを必要とするため、コストがかかり、困難である。
偏微分方程式(PDE)の広範なシミュレーションに基づいて事前訓練された科学機械学習基礎モデル(SciML)は、豊富な多物理知識を符号化し、流体場を推定するための有望な領域事前の情報源を提供する。
それにもかかわらず、現実世界の視覚問題を前進させる可能性については、ほとんど未解明のままであり、これらの基礎モデルの伝達可能性と実用性に関する疑問が提起されている。
本研究では,SciMLファンデーションモデルにより,現実の3次元流体力学を推定し,一般化を向上させることにより,データ効率を大幅に向上できることを実証する。
我々の手法の中核は、SciML基盤モデルの強力な予測能力と意味のある表現を活用することである。
基礎モデルから抽出した拡張ビューと流体特徴を利用した新しい協調学習手法をニューラルネットワークに装備する。
本手法は,実世界の流体力学におけるSciML基礎モデルの実用性を示すとともに,定量的な測定値と視覚的品質の両面で有意な改善を示す。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - FLUID-LLM: Learning Computational Fluid Dynamics with Spatiotemporal-aware Large Language Models [15.964726158869777]
大規模言語モデル(LLM)は、顕著なパターン認識と推論能力を示している。
FLUID-LLMは,非定常流体力学を予測するために,事前学習LLMと事前認識符号化を組み合わせた新しいフレームワークである。
この結果から,FLUID-LLMは時間情報を事前学習したLLMに効果的に統合し,CFDタスク性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-06-06T20:55:40Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
有効な流体データ補完法は、流体力学実験において必要なセンサー数を削減する。
流体データ完備化問題の誤った性質は、理論解を得るのを違法に困難にしている。
ベクトル量子化法を用いて、完全および不完全流体データ空間を離散値下次元表現にマッピングする。
論文 参考訳(メタデータ) (2024-02-27T03:44:55Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Complete CVDL Methodology for Investigating Hydrodynamic Instabilities [0.49873153106566565]
流体力学において、最も重要な研究分野の1つは流体力学の不安定性と異なる流れ状態におけるその進化である。
現在、そのような現象、すなわち分析モデル、実験、シミュレーションを理解するために3つの主要な手法が使用されている。
我々は、この研究の大部分が、Deep Learning(CVDL、Deep Computer-Vision)の分野における最近の画期的な進歩を用いて、分析されるべきであると主張している。
具体的には、最も代表的な不安定性であるRayleigh-Taylorの研究に焦点をあて、その振る舞いをシミュレートし、オープンソースの状態を作り出す。
論文 参考訳(メタデータ) (2020-04-03T13:52:04Z) - SoftSMPL: Data-driven Modeling of Nonlinear Soft-tissue Dynamics for
Parametric Humans [15.83525220631304]
我々は,身体形状と運動の関数として,現実的なソフトタスクのダイナミクスをモデル化する学習ベース手法であるSoftSMPLを提案する。
私たちのメソッドの中核には、非常に現実的なダイナミクスをモデル化できる3つの重要なコントリビューションがあります。
論文 参考訳(メタデータ) (2020-04-01T10:35:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。