論文の概要: A Pioneering Neural Network Method for Efficient and Robust Fluid Simulation
- arxiv url: http://arxiv.org/abs/2412.10748v3
- Date: Sat, 04 Jan 2025 02:52:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:03:50.944987
- Title: A Pioneering Neural Network Method for Efficient and Robust Fluid Simulation
- Title(参考訳): 効率的なロバスト流体シミュレーションのためのパイオニアニューラルネットワーク法
- Authors: Yu Chen, Shuai Zheng, Nianyi Wang, Menglong Jin, Yan Chang,
- Abstract要約: 本研究では,複雑な環境下での流体シミュレーションを効率的かつ堅牢に行うために設計された,最初のニューラルネットワーク手法を提案する。
このモデルは、そのような複雑なシナリオで流体粒子力学を安定にモデル化できる最初のモデルでもある。
既存のニューラルネットワークに基づく流体シミュレーションアルゴリズムと比較して、高速な計算速度を維持しながら精度を大幅に向上させた。
- 参考スコア(独自算出の注目度): 4.694954114339147
- License:
- Abstract: Fluid simulation is an important research topic in computer graphics (CG) and animation in video games. Traditional methods based on Navier-Stokes equations are computationally expensive. In this paper, we treat fluid motion as point cloud transformation and propose the first neural network method specifically designed for efficient and robust fluid simulation in complex environments. This model is also the deep learning model that is the first to be capable of stably modeling fluid particle dynamics in such complex scenarios. Our triangle feature fusion design achieves an optimal balance among fluid dynamics modeling, momentum conservation constraints, and global stability control. We conducted comprehensive experiments on datasets. Compared to existing neural network-based fluid simulation algorithms, we significantly enhanced accuracy while maintaining high computational speed. Compared to traditional SPH methods, our speed improved approximately 10 times. Furthermore, compared to traditional fluid simulation software such as Flow3D, our computation speed increased by more than 300 times.
- Abstract(参考訳): 流体シミュレーションはコンピュータグラフィックス(CG)とビデオゲームのアニメーションにおいて重要な研究トピックである。
Navier-Stokes方程式に基づく従来の手法は計算に高価である。
本稿では,流体運動を点雲変換として扱うとともに,複雑な環境下での効率的で堅牢な流体シミュレーションに特化して設計された,最初のニューラルネットワーク手法を提案する。
このモデルはまた、このような複雑なシナリオで流体粒子力学を安定にモデル化できる最初のディープラーニングモデルである。
本研究では, 流体力学モデリング, 運動量保存制約, 大域的安定性制御における最適バランスを実現する。
我々はデータセットに関する総合的な実験を行った。
既存のニューラルネットワークに基づく流体シミュレーションアルゴリズムと比較して、高速な計算速度を維持しながら精度を大幅に向上させた。
従来のSPH法と比較して, 速度は10倍に向上した。
さらに,Flow3Dのような従来の流体シミュレーションソフトウェアと比較して,計算速度は300倍以上に向上した。
関連論文リスト
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data [0.0]
熱水車シミュレーションにおける3次元流れ場予測のためのパラメータ化サロゲートモデルを提案する。
物理インフォームドニューラルネットワーク (PINN) の設計は, 幾何学的変動に応じて, 流れ解の族を学習することを目的としている。
論文 参考訳(メタデータ) (2022-03-17T09:54:22Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
右翼を見つけることは、あらゆる航空機の設計の予備段階における重要なステップである。
本研究では、異なるネットワークアーキテクチャとトレーニングデータセットを比較し、ネットワークが与えられた翼のジオメトリをどのように知覚するかについての洞察を得る。
論文 参考訳(メタデータ) (2021-09-24T19:07:19Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2021-01-28T19:10:00Z) - Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D [4.981834139548193]
本稿では,最近提案された2Dの課題に対処する深層学習フレームワークの大幅な拡張について述べる。
2Dから3Dへ移行し、メモリと計算の複雑さの観点から3Dグリッドの高要求に対処する効率的なアーキテクチャを提案する。
提案手法は,現行の3次元NN流体モデルよりも精度,速度,一般化能力が向上したことを示す。
論文 参考訳(メタデータ) (2020-12-22T09:21:40Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
最近のディープラーニングベースのアプローチは、膨大なスピードアップを約束するが、新しい流体ドメインには一般化しない。
本稿では,新しい流体領域に一般化する物理制約付きトレーニング手法を提案する。
トレーニングされたモデルの速度と一般化能力を示すインタラクティブなリアルタイムデモを提示する。
論文 参考訳(メタデータ) (2020-06-15T20:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。