論文の概要: Physically Interpretable Representation and Controlled Generation for Turbulence Data
- arxiv url: http://arxiv.org/abs/2502.02605v1
- Date: Fri, 31 Jan 2025 17:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 18:00:55.532367
- Title: Physically Interpretable Representation and Controlled Generation for Turbulence Data
- Title(参考訳): 乱流データの物理的解釈可能な表現・制御生成
- Authors: Tiffany Fan, Murray Cutforth, Marta D'Elia, Alexandre Cortiella, Alireza Doostan, Eric Darve,
- Abstract要約: 本稿では,高次元科学的データを低次元,物理的に意味のある表現に符号化するデータ駆動型手法を提案する。
レイノルズ数の範囲を越えるシリンダーを過ぎる流れの2次元ナビエ・ストークスシミュレーションを用いて,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 39.42376941186934
- License:
- Abstract: Computational Fluid Dynamics (CFD) plays a pivotal role in fluid mechanics, enabling precise simulations of fluid behavior through partial differential equations (PDEs). However, traditional CFD methods are resource-intensive, particularly for high-fidelity simulations of complex flows, which are further complicated by high dimensionality, inherent stochasticity, and limited data availability. This paper addresses these challenges by proposing a data-driven approach that leverages a Gaussian Mixture Variational Autoencoder (GMVAE) to encode high-dimensional scientific data into low-dimensional, physically meaningful representations. The GMVAE learns a structured latent space where data can be categorized based on physical properties such as the Reynolds number while maintaining global physical consistency. To assess the interpretability of the learned representations, we introduce a novel metric based on graph spectral theory, quantifying the smoothness of physical quantities along the latent manifold. We validate our approach using 2D Navier-Stokes simulations of flow past a cylinder over a range of Reynolds numbers. Our results demonstrate that the GMVAE provides improved clustering, meaningful latent structure, and robust generative capabilities compared to baseline dimensionality reduction methods. This framework offers a promising direction for data-driven turbulence modeling and broader applications in computational fluid dynamics and engineering systems.
- Abstract(参考訳): 計算流体力学(CFD)は流体力学において重要な役割を担い、偏微分方程式(PDE)による流体の挙動の正確なシミュレーションを可能にする。
しかし、従来のCFD法は資源集約的であり、特に複雑な流れの高忠実性シミュレーションは、高次元性、固有確率性、データ可用性の制限によりさらに複雑である。
本稿では、ガウス混合変分オートエンコーダ(GMVAE)を用いて、高次元の科学的データを低次元、物理的に意味のある表現にエンコードするデータ駆動手法を提案する。
GMVAEは、グローバルな物理的一貫性を維持しながら、レイノルズ数のような物理的性質に基づいてデータを分類できる構造化潜在空間を学習する。
学習した表現の解釈可能性を評価するため、グラフスペクトル理論に基づく新しい計量法を導入し、潜在多様体に沿った物理量の滑らかさを定量化する。
レイノルズ数の範囲を越えるシリンダーを過ぎる流れの2次元ナビエ・ストークスシミュレーションを用いて,本手法の有効性を検証した。
以上の結果から, GMVAEは, 基準次元削減法と比較して, クラスタリング, 有意義な潜伏構造, 堅牢な生成能力を向上できることが示唆された。
このフレームワークは、データ駆動乱流モデリングと計算流体力学および工学システムにおける幅広い応用に有望な方向を提供する。
関連論文リスト
- GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体としてモデル化し、理想化された仮定なしに現実的な変形を考慮に入れた。
ガウシムは質量や運動量保存などの明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
空気力学は航空宇宙工学の重要な問題であり、しばしば翼のような固体物と相互作用する流れを伴う。
本稿では, 固体物体上の非圧縮性流れのモデル化について考察する。
ジオメトリを効果的に組み込むため,メッシュ表現に翼形状を効率よく,かつ効率的に統合するメッセージパッシング方式を提案する。
これらの設計選択は、純粋にデータ駆動の機械学習フレームワークであるGeoMPNNにつながり、NeurIPS 2024 ML4CFDコンペティションで最優秀学生賞を受賞し、総合で4位となった。
論文 参考訳(メタデータ) (2024-12-12T16:05:39Z) - Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
有効な流体データ補完法は、流体力学実験において必要なセンサー数を削減する。
流体データ完備化問題の誤った性質は、理論解を得るのを違法に困難にしている。
ベクトル量子化法を用いて、完全および不完全流体データ空間を離散値下次元表現にマッピングする。
論文 参考訳(メタデータ) (2024-02-27T03:44:55Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for
Approximating Reynolds-Averaged Navier-Stokes Solutions [9.561442022004808]
本研究では,2次元非圧縮性定常状態Reynolds-Averaged Navier-Stokes方程式のサブソニックな状態における翼上における解析モデルであるAirfRANSを開発した。
また,測地面の応力力と境界層の可視化の指標を導入し,モデルの性能を評価し,問題の有意義な情報を正確に予測する。
論文 参考訳(メタデータ) (2022-12-15T00:41:09Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。