論文の概要: Energy-Efficient SLAM via Joint Design of Sensing, Communication, and Exploration Speed
- arxiv url: http://arxiv.org/abs/2412.13912v1
- Date: Wed, 18 Dec 2024 14:53:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:52.27953
- Title: Energy-Efficient SLAM via Joint Design of Sensing, Communication, and Exploration Speed
- Title(参考訳): センシング・通信・探索の連成設計によるエネルギー効率SLAM
- Authors: Zidong Han, Ruibo Jin, Xiaoyang Li, Bingpeng Zhou, Qinyu Zhang, Yi Gong,
- Abstract要約: 生涯同時局在マッピング(SLAM)が注目されている。
本稿では,センサ,コミュニケーション,機械的要因を共同で検討し,生涯SLAMにおけるロボット動作のエネルギー効率の分析に焦点をあてる。
検知時間、送信電力、送信時間、探索速度は、エネルギー消費を最小限に抑えるために共同で最適化される。
- 参考スコア(独自算出の注目度): 13.424298798813657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To support future spatial machine intelligence applications, lifelong simultaneous localization and mapping (SLAM) has drawn significant attentions. SLAM is usually realized based on various types of mobile robots performing simultaneous and continuous sensing and communication. This paper focuses on analyzing the energy efficiency of robot operation for lifelong SLAM by jointly considering sensing, communication and mechanical factors. The system model is built based on a robot equipped with a 2D light detection and ranging (LiDAR) and an odometry. The cloud point raw data as well as the odometry data are wirelessly transmitted to data center where real-time map reconstruction is realized based on an unsupervised deep learning based method. The sensing duration, transmit power, transmit duration and exploration speed are jointly optimized to minimize the energy consumption. Simulations and experiments demonstrate the performance of our proposed method.
- Abstract(参考訳): 将来的な空間マシンインテリジェンスアプリケーションをサポートするために、生涯の同時ローカライゼーションとマッピング(SLAM)が注目されている。
SLAMは通常、同時かつ連続的なセンシングと通信を行う様々なタイプの移動ロボットに基づいて実現される。
本稿では,センサ,コミュニケーション,機械的要因を共同で検討し,生涯SLAMにおけるロボット動作のエネルギー効率の分析に焦点をあてる。
システムモデルは2次元光検出・測光(LiDAR)とオドメトリーを備えたロボットに基づいて構築される。
クラウドポイント生データとオドメトリーデータとを無線でデータセンターに送信し、教師なし深層学習法に基づいてリアルタイム地図再構成を実現する。
検知時間、送信電力、送信時間、探索速度は、エネルギー消費を最小限に抑えるために共同で最適化される。
シミュレーションと実験により提案手法の性能を実証した。
関連論文リスト
- Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation [50.34179054785646]
ロボット,触覚センサ,物体を精度と前例のない速度でモデル化するために,IPCとABDを統合した高性能なシミュレーションプラットフォームであるTaccelを提案する。
Taccelは正確な物理シミュレーションとリアルな触覚信号を提供し、ユーザフレンドリーなAPIを通じて柔軟なロボットセンサー構成をサポートする。
これらの能力は、触覚ロボットの研究と開発を拡大するための強力なツールとして、Taccelを位置づけている。
論文 参考訳(メタデータ) (2025-04-17T12:57:11Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
ビームフォーミングは、方向と強度を最適化して信号伝送を改善するミリ波通信において重要な技術である。
マルチモーダルセンシング支援ビーム予測は,ユーザ位置やネットワーク条件を予測するために,さまざまなセンサデータを使用して注目されている。
その有望な可能性にもかかわらず、マルチモーダルセンシング支援ビーム予測の採用は、高い計算複雑性、高いコスト、限られたデータセットによって妨げられている。
論文 参考訳(メタデータ) (2025-04-07T15:38:25Z) - Virtual Sensing-Enabled Digital Twin Framework for Real-Time Monitoring of Nuclear Systems Leveraging Deep Neural Operators [0.36651088217486427]
本稿では,デジタルツインフレームワークのコアコンポーネントとしてDeepOperator Networks (DeepONet) を導入する。
DeepONetは動的でスケーラブルな仮想センサとして機能し、操作された入力パラメータと空間的に分散されたシステムの振る舞いの間の相互作用を正確にマッピングする。
この結果から,DeepONetは平均二乗誤差と相対L2誤差で精度の高い予測を行い,従来のCFDシミュレーションの1400倍の精度で未知データの予測を行うことができた。
論文 参考訳(メタデータ) (2024-10-17T16:56:04Z) - Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - StreamLTS: Query-based Temporal-Spatial LiDAR Fusion for Cooperative Object Detection [0.552480439325792]
我々は、広く使われているデータセットOPV2VとDairV2Xを適応させる、TA-COOD(Time-Aligned Cooperative Object Detection)を提案する。
実験結果から, 最先端の高密度モデルと比較して, 完全スパースフレームワークの優れた効率性が確認された。
論文 参考訳(メタデータ) (2024-07-04T10:56:10Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Neural Implicit Swept Volume Models for Fast Collision Detection [0.0]
本稿では,深層学習に基づく符号付き距離計算の高速化と幾何衝突チェッカーの精度保証を併用したアルゴリズムを提案する。
シミュレーションおよび実世界のロボット実験において、我々のアプローチを検証するとともに、商用ビンピッキングアプリケーションを高速化できることを実証する。
論文 参考訳(メタデータ) (2024-02-23T12:06:48Z) - Radar-Based Recognition of Static Hand Gestures in American Sign
Language [17.021656590925005]
本研究では,先進レーダ線トレーシングシミュレータによる合成データの有効性について検討した。
シミュレータは直感的な材料モデルを採用し、データ多様性を導入するように調整することができる。
NNを合成データで専用にトレーニングしているにもかかわらず、実際の測定データでテストを行うと、有望な性能を示す。
論文 参考訳(メタデータ) (2024-02-20T08:19:30Z) - Rethinking the Tradeoff in Integrated Sensing and Communication:
Recognition Accuracy versus Communication Rate [21.149708253108788]
ISAC(Integrated Sensistance and Communication)は、バンド利用効率を向上させるための有望な技術である。
センシング性能と通信性能の間にはトレードオフがある。
本稿では、認識精度と通信データレートを同時に最大化する多目的最適化問題を定式化し、解決する。
論文 参考訳(メタデータ) (2021-07-20T17:00:35Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
本稿では,移動ロボットのシナリオに着目した既存のLiDAR人物検出装置について検討する。
実験は3Dと2D LiDARのセンサー間のモダリティのギャップだけでなく、運転と移動ロボットのシナリオ間の領域ギャップを回避している。
その結果、LiDARに基づく人物検出の実践的な洞察を与え、関連する移動ロボットの設計と応用に関する情報決定を容易にする。
論文 参考訳(メタデータ) (2021-06-21T16:35:49Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
相関情報を利用するスケジューリング機構を提案する。
提案したメカニズムは、センサが更新を送信する頻度を決定することができる。
我々は,センサの寿命を大幅に延長できることを示した。
論文 参考訳(メタデータ) (2020-11-19T09:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。