論文の概要: Spatio-Temporal Forecasting of PM2.5 via Spatial-Diffusion guided Encoder-Decoder Architecture
- arxiv url: http://arxiv.org/abs/2412.13935v1
- Date: Wed, 18 Dec 2024 15:18:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:52.130708
- Title: Spatio-Temporal Forecasting of PM2.5 via Spatial-Diffusion guided Encoder-Decoder Architecture
- Title(参考訳): 空間拡散誘導エンコーダデコーダアーキテクチャによるPM2.5の時空間予測
- Authors: Malay Pandey, Vaishali Jain, Nimit Godhani, Sachchida Nand Tripathi, Piyush Rai,
- Abstract要約: 本稿では,PM2.5濃度の予測に係わる依存関係を具体的に把握するS-Temporal Graph Networkアーキテクチャを提案する。
本モデルは,グラフニューラルネットワーク(Transformerv)を付加した再帰単位(GRU)を利用して空間拡散を考慮したエンコーダ・デコーダアーキテクチャに基づいている。
- 参考スコア(独自算出の注目度): 9.955223104442755
- License:
- Abstract: In many problem settings that require spatio-temporal forecasting, the values in the time-series not only exhibit spatio-temporal correlations but are also influenced by spatial diffusion across locations. One such example is forecasting the concentration of fine particulate matter (PM2.5) in the atmosphere which is influenced by many complex factors, the most important ones being diffusion due to meteorological factors as well as transport across vast distances over a period of time. We present a novel Spatio-Temporal Graph Neural Network architecture, that specifically captures these dependencies to forecast the PM2.5 concentration. Our model is based on an encoder-decoder architecture where the encoder and decoder parts leverage gated recurrent units (GRU) augmented with a graph neural network (TransformerConv) to account for spatial diffusion. Our model can also be seen as a generalization of various existing models for time-series or spatio-temporal forecasting. We demonstrate the model's effectiveness on two real-world PM2.5 datasets: (1) data collected by us using a recently deployed network of low-cost PM$_{2.5}$ sensors from 511 locations spanning the entirety of the Indian state of Bihar over a period of one year, and (2) another publicly available dataset that covers severely polluted regions from China for a period of 4 years. Our experimental results show our model's impressive ability to account for both spatial as well as temporal dependencies precisely.
- Abstract(参考訳): 時空間予測を必要とする多くの問題設定において、時系列の値は時空間相関を示すだけでなく、場所間の空間拡散にも影響される。
例えば、大気中の微粒子物質(PM2.5)の濃度は、多くの複雑な要因の影響を受けており、最も重要なものは気象要因による拡散であり、また長期間にわたって広範囲にわたる輸送である。
本稿では,PM2.5濃度を予測するために,これらの依存関係を特に捉えた新しい時空間グラフニューラルネットワークアーキテクチャを提案する。
本モデルは,エンコーダとデコーダ部をグラフニューラルネットワーク(TransformerConv)で拡張したゲートリカレントユニット(GRU)を利用して空間拡散を考慮したエンコーダデコーダアーキテクチャに基づいている。
我々のモデルは、時系列や時空間予測のための様々な既存モデルの一般化と見なすこともできる。
1) インドのビハール州全体にわたる511箇所から最近展開されたPM$_{2.5}$センサーのネットワークを用いて収集したデータと,(2) 中国から高度に汚染された地域を4年間にわたってカバーした公開データセットである。
実験結果から,空間的および時間的依存を正確に考慮する上で,モデルが持つ印象的な能力を示す。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - A Data-Driven Supervised Machine Learning Approach to Estimating Global
Ambient Air Pollution Concentrations With Associated Prediction Intervals [0.0]
我々は、時間的および空間的計測の欠如を示唆するスケーラブルでデータ駆動型の教師あり機械学習フレームワークを開発した。
このモデルは, 時間的および空間的計測の欠如を示唆し, NO$, O$_3$, PM$_10$, PM$_2.5$, SO$などの汚染物質の包括的データセットを生成するように設計されている。
モデルの性能について検討し,今後のモニタリングステーションの戦略的配置に関する洞察と勧告を提供する。
論文 参考訳(メタデータ) (2024-02-15T11:09:22Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
本稿では,非対称な受容場オートエンコーダ (ARFA) モデルを提案する。
エンコーダでは,大域的時間的特徴抽出のための大規模なカーネルモジュールを提案し,デコーダでは局所的時間的再構成のための小さなカーネルモジュールを開発する。
降水予測のための大規模レーダエコーデータセットであるRainBenchを構築し,その領域における気象データの不足に対処する。
論文 参考訳(メタデータ) (2023-09-01T07:55:53Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - SERT: A Transfomer Based Model for Spatio-Temporal Sensor Data with
Missing Values for Environmental Monitoring [0.0]
センサーから収集されたデータは、故障した機器やメンテナンス上の問題によって、しばしば値が失われる。
計算を必要とせず、欠落したデータを処理しながら、多変量時間予測を行うことのできる2つのモデルを提案する。
論文 参考訳(メタデータ) (2023-06-05T17:06:23Z) - A Novel Prediction Approach for Exploring PM2.5 Spatiotemporal
Propagation Based on Convolutional Recursive Neural Networks [7.131106953836335]
PM2.5の伝播予測システムは、地域社会への健康影響を減らす早期警戒システムとして、より詳細で正確な情報を提供する。
本研究は,台湾の大気質モニタリングシステムのデータセットを用いて行った。
一般に、測定ノード間の結合を空間的にも時間的にも考慮し、正確な予測結果を提供することができる。
論文 参考訳(メタデータ) (2021-01-15T17:00:04Z) - Indoor environment data time-series reconstruction using autoencoder
neural networks [0.0]
データセットの構築は、しばしばエラーと欠落した値によって特徴づけられる。
3つの異なるオートエンコーダニューラルネットワークがトレーニングされ、行方不明な短期屋内環境データ時系列を再構築する。
論文 参考訳(メタデータ) (2020-09-17T09:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。