論文の概要: No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
- arxiv url: http://arxiv.org/abs/2511.05179v1
- Date: Fri, 07 Nov 2025 11:50:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.752187
- Title: No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
- Title(参考訳): 一つのモデルがすべてではない:グラフニューラルネットワークと基礎モデルによる時空間予測トレードオフの発見
- Authors: Ragini Gupta, Naman Raina, Bo Chen, Li Chen, Claudiu Danilov, Josh Eckhardt, Keyshla Bernard, Klara Nahrstedt,
- Abstract要約: 本研究は,空間センサ密度とサンプリング間隔の異なる予測モデルについて,系統的研究を行った。
以上の結果から,STGはセンサ配置が小さく,サンプリングレートが適度である場合に有効であることが示唆された。
重要なことは、TSFMは高周波で競合するが、隣り合うセンサーからの空間被覆が減少すると劣化する。
- 参考スコア(独自算出の注目度): 8.918505166222875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models
- Abstract(参考訳): 環境検知のための現代的なIoTデプロイメントは、高ボリュームの時空間データを生成し、予測などの下流タスクをサポートする。
既存のフィルタリングおよび戦略的展開手法は、エッジで収集したデータ量を最適化するが、サンプリング周波数と空間被覆の変化が下流モデルの性能にどのように影響するかを見落としている。
多くの予測モデルにおいて、追加センサからのデータを取り入れることで、より広い空間的コンテキストを提供することで予測を悪用する。
サンプリング周波数、空間被覆および異なる予測モデルアーキテクチャ間の相互作用は、まだ未解明のままである。
本研究は,従来のモデル(VAR),ニューラルネットワーク(GRU,Transformer),時空間グラフニューラルネットワーク(STGNN),時系列基礎モデル(TSFMs:Chronos Moirai,TimesFM)を,無線センサネットワークにおける実環境温度データを用いて,空間センサノード密度とサンプリング間隔の変動を考慮した予測モデルを提案する。
以上の結果から,STGNNはセンサ配置が狭くサンプリングレートが適度である場合に有効であり,符号化されたグラフ構造による空間相関を利用して限られた範囲を補うことができることがわかった。
対照的に、TSFMは高周波で競合するが、隣り合うセンサーからの空間被覆が減少すると劣化する。
重要な点として、多変量TSFMモイライは、クロスセンサー依存関係をネイティブに学習することで、すべてのモデルより優れています。
これらの知見は時空間系における効率的な予測パイプライン構築に有効である。
モデル設定、トレーニング、データセット、ログのすべてのコードは、再現性のためにオープンソース化されている。
関連論文リスト
- Modeling Spatial Extremes using Non-Gaussian Spatial Autoregressive Models via Convolutional Neural Networks [14.37149160708975]
本稿では,空間的自己回帰モデリングフレームワークを提案する。このフレームワークは,位置とその近傍の観測を独立確率変数にマッピングする。
特に,SARモデルと一般化極値分布の革新について検討し,中心格子位置での観測と近傍の観測を組み合わせた。
本モデルを用いて,ERA-Interim-driven Weather Research and Forecasting (WRF) シミュレーションによる年間降水量の分析を行った。
論文 参考訳(メタデータ) (2025-05-05T21:26:02Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
本稿では, 簡易な実装, 効率的, 堅牢な性能で, センサとモデル識別の問題を共同で解決する手法を提案する。
SINDy-SHREDはGated Recurrent Unitsを使用してスパースセンサー計測と浅いネットワークデコーダをモデル化し、潜在状態空間からフルタイムフィールドを再構築する。
本研究では, 乱流, 海面温度の実環境センサ計測, 直接ビデオデータなどのPDEデータに関する系統的研究を行った。
論文 参考訳(メタデータ) (2025-01-23T02:18:13Z) - Temporal Graph MLP Mixer for Spatio-Temporal Forecasting [1.5696662871407674]
T-GMM (Temporal Graph-Mixer) は、データ不足に対処するために設計されたアーキテクチャである。
モデルはノードレベルの処理とサブグラフエンコーディングを組み合わせて、局所化された空間依存をキャプチャする。
AQI、ENGRAD、PV-US、METR-LAデータセットの実験では、大きな欠落したデータが存在する場合でも、モデルが効果的に予測できることが示されている。
論文 参考訳(メタデータ) (2025-01-17T14:13:48Z) - ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data [59.78770412981611]
現実世界のアプリケーションでは、ほとんどのノードはトレーニング中に利用可能な時間データを持っていないかもしれない。
この問題に対処するために,ST-FiTというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-14T17:51:29Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - It is all Connected: A New Graph Formulation for Spatio-Temporal
Forecasting [1.278093617645299]
グラフニューラルネットワーク(GNN)ネットワークを用いて時間的および空間的依存関係を学習するためのフレームワークを提案する。
GNNは、すべてのサンプルをグラフ内の独自のノードとして表現する。
このフレームワークは時間次元に沿った測定を必要としないため、データサンプリングの計算を必要とせずに、不規則な時系列、異なる周波数、または欠落データを容易にする。
論文 参考訳(メタデータ) (2023-03-23T11:16:33Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
イタリア・ボルツァーノの監視アパートから得られた時系列データギャップを埋めるための2つのDeep Learningモデルを開発した。
提案手法は, 変動するデータの性質を把握し, 対象時系列の再構成に優れた精度を示す。
論文 参考訳(メタデータ) (2022-04-21T09:40:30Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。