Spatio-Temporal Forecasting of PM2.5 via Spatial-Diffusion guided Encoder-Decoder Architecture
- URL: http://arxiv.org/abs/2412.13935v1
- Date: Wed, 18 Dec 2024 15:18:12 GMT
- Title: Spatio-Temporal Forecasting of PM2.5 via Spatial-Diffusion guided Encoder-Decoder Architecture
- Authors: Malay Pandey, Vaishali Jain, Nimit Godhani, Sachchida Nand Tripathi, Piyush Rai,
- Abstract summary: We present a novel S-Temporal Graph Network architecture that specifically captures dependencies to forecast PM2.5 concentration.
Our model is based on an encoder-decoder architecture where the decoder parts leverage recurrent units (GRU) augmented with a graph neural network (Transformerv) to account for spatial diffusion.
- Score: 9.955223104442755
- License:
- Abstract: In many problem settings that require spatio-temporal forecasting, the values in the time-series not only exhibit spatio-temporal correlations but are also influenced by spatial diffusion across locations. One such example is forecasting the concentration of fine particulate matter (PM2.5) in the atmosphere which is influenced by many complex factors, the most important ones being diffusion due to meteorological factors as well as transport across vast distances over a period of time. We present a novel Spatio-Temporal Graph Neural Network architecture, that specifically captures these dependencies to forecast the PM2.5 concentration. Our model is based on an encoder-decoder architecture where the encoder and decoder parts leverage gated recurrent units (GRU) augmented with a graph neural network (TransformerConv) to account for spatial diffusion. Our model can also be seen as a generalization of various existing models for time-series or spatio-temporal forecasting. We demonstrate the model's effectiveness on two real-world PM2.5 datasets: (1) data collected by us using a recently deployed network of low-cost PM$_{2.5}$ sensors from 511 locations spanning the entirety of the Indian state of Bihar over a period of one year, and (2) another publicly available dataset that covers severely polluted regions from China for a period of 4 years. Our experimental results show our model's impressive ability to account for both spatial as well as temporal dependencies precisely.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - A Data-Driven Supervised Machine Learning Approach to Estimating Global
Ambient Air Pollution Concentrations With Associated Prediction Intervals [0.0]
We have developed a scalable, data-driven, supervised machine learning framework to impute missing temporal and spatial measurements.
This model is designed to impute missing temporal and spatial measurements, thereby generating a comprehensive dataset for pollutants including NO$, O$_3$, PM$_10$, PM$_2.5$, and SO$.
The model's performance across various geographical locations is examined, providing insights and recommendations for strategic placement of future monitoring stations.
arXiv Detail & Related papers (2024-02-15T11:09:22Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
arXiv Detail & Related papers (2024-01-19T06:26:05Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
We propose an Asymmetric Receptive Field Autoencoder (ARFA) model, which introduces corresponding sizes of receptive field modules.
In the encoder, we present large kernel module for globaltemporal feature extraction. In the decoder, we develop a small kernel module for localtemporal reconstruction.
We construct the RainBench, a large-scale radar echo dataset for precipitation prediction, to address the scarcity of meteorological data in the domain.
arXiv Detail & Related papers (2023-09-01T07:55:53Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - SERT: A Transfomer Based Model for Spatio-Temporal Sensor Data with
Missing Values for Environmental Monitoring [0.0]
Data collected from sensors often contain missing values due to faulty equipment or maintenance issues.
We propose two models that are capable of performing multivariate-temporal forecasting while handling missing data without need for imputation.
arXiv Detail & Related papers (2023-06-05T17:06:23Z) - A Novel Prediction Approach for Exploring PM2.5 Spatiotemporal
Propagation Based on Convolutional Recursive Neural Networks [7.131106953836335]
The prediction system of PM2.5 propagation provides more detailed and accurate information as an early warning system to reduce health impacts on the community.
This research was conducted by using dataset of air quality monitoring systems in Taiwan.
In general, the model is able to provide accurate predictive results by considering the bonds among measurement nodes in both spatially and temporally.
arXiv Detail & Related papers (2021-01-15T17:00:04Z) - Indoor environment data time-series reconstruction using autoencoder
neural networks [0.0]
Building data sets are often characterized by errors and missing values.
Three different autoencoder neural networks are trained to reconstruct missing short-term indoor environment data time-series.
arXiv Detail & Related papers (2020-09-17T09:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.