論文の概要: Nemesis: Noise-randomized Encryption with Modular Efficiency and Secure Integration in Machine Learning Systems
- arxiv url: http://arxiv.org/abs/2412.14392v1
- Date: Wed, 18 Dec 2024 22:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:32:15.366278
- Title: Nemesis: Noise-randomized Encryption with Modular Efficiency and Secure Integration in Machine Learning Systems
- Title(参考訳): Nemesis: 機械学習システムにおけるモジュール効率とセキュアな統合によるノイズランダム化暗号化
- Authors: Dongfang Zhao,
- Abstract要約: Nemesisは、正確さやセキュリティを損なうことなく、FHEベースの機械学習システムを高速化するフレームワークである。
我々は、標準的な暗号的仮定の下で、Nemesisのセキュリティを証明する。
その結果、NemesisはFHEベースのMLシステムの計算オーバーヘッドを大幅に削減することがわかった。
- 参考スコア(独自算出の注目度): 1.3824176915623292
- License:
- Abstract: Machine learning (ML) systems that guarantee security and privacy often rely on Fully Homomorphic Encryption (FHE) as a cornerstone technique, enabling computations on encrypted data without exposing sensitive information. However, a critical limitation of FHE is its computational inefficiency, making it impractical for large-scale applications. In this work, we propose \textit{Nemesis}, a framework that accelerates FHE-based systems without compromising accuracy or security. The design of Nemesis is inspired by Rache (SIGMOD'23), which introduced a caching mechanism for encrypted integers and scalars. Nemesis extends this idea with more advanced caching techniques and mathematical tools, enabling efficient operations over multi-slot FHE schemes and overcoming Rache's limitations to support general plaintext structures. We formally prove the security of Nemesis under standard cryptographic assumptions and evaluate its performance extensively on widely used datasets, including MNIST, FashionMNIST, and CIFAR-10. Experimental results show that Nemesis significantly reduces the computational overhead of FHE-based ML systems, paving the way for broader adoption of privacy-preserving technologies.
- Abstract(参考訳): セキュリティとプライバシを保証する機械学習(ML)システムは、機密情報を公開せずに暗号化されたデータの計算を可能にするための基礎となるテクニックとして、フルホモモルフィック暗号化(FHE)に依存していることが多い。
しかし、FHEの限界は計算の非効率性であり、大規模アプリケーションでは実用的ではない。
本研究では、FHEベースのシステムを精度やセキュリティを損なうことなく高速化するフレームワークである「textit{Nemesis}」を提案する。
Nemesisの設計は、暗号化された整数とスカラーのためのキャッシュ機構を導入したRache(SIGMOD'23)にインスパイアされている。
Nemesisはこのアイデアを、より高度なキャッシュ技術と数学的ツールで拡張し、マルチスロットのFHEスキーム上の効率的な操作を可能にし、一般的な平文構造をサポートするRacheの制限を克服した。
我々は,標準的な暗号仮定の下でのNemesisの安全性を正式に証明し,その性能をMNIST,FashionMNIST,CIFAR-10などの広く使用されているデータセットで広く評価する。
実験の結果、NemesisはFHEベースのMLシステムの計算オーバーヘッドを大幅に減らし、プライバシ保護技術を広く採用する道を開いた。
関連論文リスト
- Encrypted Large Model Inference: The Equivariant Encryption Paradigm [18.547945807599543]
Equivariant Encryption(EE)は,暗号化されたデータに対して,性能上のオーバーヘッドがゼロに近いセキュアな"盲目"推論を可能にするように設計された,新しいパラダイムである。
計算グラフ全体を暗号化する完全同型アプローチとは異なり、EEはニューラルネットワーク層内の重要な内部表現を選択的に難読化する。
EEは高い忠実性とスループットを維持しており、ロバストなデータの機密性と、現代的な大規模モデル推論の厳密な効率要件の間のギャップを効果的に埋めています。
論文 参考訳(メタデータ) (2025-02-03T03:05:20Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
本稿では,機械学習アルゴリズムの新たな2つの応用法を提案する。
これらのアルゴリズムは、監査設定で容易に適用でき、暗号システムの堅牢性を評価することができる。
本稿では,DES,RSA,AES ECBなど,IND-CPAの安全でない暗号化スキームを高精度に識別する。
論文 参考訳(メタデータ) (2025-01-25T04:53:36Z) - Secure numerical simulations using fully homomorphic encryption [2.923600136516929]
データプライバシは、医療、財務、エンジニアリングデータなどの機密情報に数値シミュレーションを使用する場合、重要な懸念事項である。
完全同型暗号化(FHE)は、暗号化されたデータに直接セキュアな計算を可能にすることによって、データのプライバシを実現するための有望なソリューションを提供する。
暗号的に安全な数値シミュレーションが可能であることを示すが、計算オーバーヘッドとFHEによる数値誤差について慎重に検討する必要がある。
論文 参考訳(メタデータ) (2024-10-29T07:47:10Z) - Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
フェデレートラーニング(Federated Learning)は、複数の学習クライアントがプライベートデータを公開せずにモデル知識を共有できるようにする、従来の方法に代わるプライバシ保護手法である。
この研究は、古典層と量子層の両方を統合するフェデレート学習ニューラルネットワークアーキテクチャに完全同型暗号化スキームを適用した。
論文 参考訳(メタデータ) (2024-09-14T01:23:26Z) - At Least Factor-of-Two Optimization for RWLE-Based Homomorphic Encryption [0.0]
ホモモルフィック暗号化(HE)は、復号化を必要とせずに、暗号化データの特定の操作をサポートする。
HEスキームには、データ集約的なワークロードを妨げるような、非自明な計算オーバーヘッドが伴います。
我々は、Zincと呼ぶ暗号化方式を提案し、複数のキャッシュ処理を禁止し、単一のスカラー加算で置き換える。
論文 参考訳(メタデータ) (2024-08-14T05:42:35Z) - Smuche: Scalar-Multiplicative Caching in Homomorphic Encryption [1.3824176915623292]
ホモモルフィック暗号化(HE)は、信頼できない環境での機械学習システムで使用される。
本稿では,任意のパラメータに依存しない新しいテキストコンスタント時間キャッシング手法を提案する。
SmucheはScalar-multiplicative Caching of Homomorphic Encryptionの略である。
論文 参考訳(メタデータ) (2023-12-26T23:11:25Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
トランスフォーマーモデルのプライバシ保護推論は、クラウドサービスユーザの要求に基づいています。
我々は、事前訓練されたモデルのプライバシ保存推論を可能にするトランスフォーマーの近似アプローチである$textitTHE-X$を紹介した。
論文 参考訳(メタデータ) (2022-06-01T03:49:18Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。