論文の概要: ChainRank-DPO: Chain Rank Direct Preference Optimization for LLM Rankers
- arxiv url: http://arxiv.org/abs/2412.14405v1
- Date: Wed, 18 Dec 2024 23:24:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:29:21.043478
- Title: ChainRank-DPO: Chain Rank Direct Preference Optimization for LLM Rankers
- Title(参考訳): ChainRank-DPO:LLMランキングの連鎖ランク直接選好最適化
- Authors: Haowei Liu, Xuyang Wu, Guohao Sun, Zhiqiang Tao, Yi Fang,
- Abstract要約: 大規模言語モデル(LLM)は、RangeGPTのような作品を通してテキストのランク付けにおいて顕著な効果を示している。
ランク付けのための微調整の監督は、これらのモデルの汎用能力を低下させる。
そこで本稿では,SFT-DPOパイプラインを用いたChain-of-Thoughtの導入により,これらの機能を維持しつつ,ランキング性能を向上する手法を提案する。
- 参考スコア(独自算出の注目度): 22.51924253176532
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable effectiveness in text reranking through works like RankGPT, leveraging their human-like reasoning about relevance. However, supervised fine-tuning for ranking often diminishes these models' general-purpose capabilities, including the crucial reasoning abilities that make them valuable for ranking. We introduce a novel approach integrating Chain-of-Thought prompting with an SFT-DPO (Supervised Fine-Tuning followed by Direct Preference Optimization) pipeline to preserve these capabilities while improving ranking performance. Our experiments on TREC 2019 and 2020 Deep Learning datasets show that our approach outperforms the state-of-the-art RankZephyr while maintaining strong performance on the Massive Multitask Language Understanding (MMLU) benchmark, demonstrating effective preservation of general-purpose capabilities through thoughtful fine-tuning strategies. Our code and data will be publicly released upon the acceptance of the paper.
- Abstract(参考訳): 大きな言語モデル(LLM)は、RangeGPTのような作品を通じてテキストのランク付けにおいて顕著な効果を示し、関連性に関する人間的な推論を活用している。
しかし、ランク付けのための教師付き微調整は、これらのモデルの汎用能力を低下させることが多く、その中にはランキングに価値をもたらす重要な理由付け能力が含まれる。
そこで我々は,SFT-DPO(Supervised Fine-TuningおよびDirect Preference Optimization)パイプラインにChain-of-Thoughtを組み込むことにより,これらの性能を向上しつつ維持する手法を提案する。
TREC 2019と2020 Deep Learningデータセットを用いた実験により、我々のアプローチは最先端のRanZephyrよりも優れており、Multistive Multitask Language Understanding (MMLU)ベンチマークでは高い性能を維持し、思慮深い微調整戦略による汎用能力の効果的な保存を実証している。
私たちのコードとデータは、論文の受理後に公開されます。
関連論文リスト
- Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
我々は、イテレーション間で一貫した改善を保証するために、動的ノイズ優先最適化(DNPO)を導入します。
Zephyr-7Bでの実験では、DNPOは既存の手法を一貫して上回り、平均性能は2.6%向上した。
DNPOは、GPT-4評価のベースラインに比べて29.4%のウィンロス率差で、モデル生成データの品質が大幅に向上したことを示している。
論文 参考訳(メタデータ) (2025-02-08T01:20:09Z) - Teaching LLMs to Refine with Tools [68.23479664749271]
大規模言語モデル(LLM)はフィードバックに基づいて応答を洗練し、反復的なトレーニングやテスト時間の改良を通じて自己改善を可能にする。
外部ツールを用いて同一または他のLLMによって生成されたチェーン・オブ・シント(CoT)応答を洗練するための新しいアプローチであるCaPを提案する。
論文 参考訳(メタデータ) (2024-12-22T05:43:50Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
我々は、パーソナライズされた選好最適化(RosePO)を円滑にするための一般的なフレームワークを提案する。
RosePOは、トレーニング後の段階において、カスタマイズされた人的価値との整合性が向上する。
実世界の3つのデータセットの評価は,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-10-16T12:54:34Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT)は、大規模言語モデルとペアワイズデータセットの整合性を改善する効果的なアプローチである。
ASFTは、DPO損失関数が人間の不適切なデータを生成する確率を減少させる問題を緩和する。
大規模な実験により、ASFTは効果的なアライメントアプローチであり、既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-09-14T11:39:13Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - Towards Off-Policy Reinforcement Learning for Ranking Policies with
Human Feedback [47.03475305565384]
本稿では,ユーザの長期報酬を同時に最大化し,オフラインでランキングを最適化する,新たなオフ政治価値ランキング(VR)アルゴリズムを提案する。
EMプロセスは、将来の報酬とランキング基準の統合の恩恵を享受し、オンラインインタラクションなしで学習するために、リーンポリシーを導いてくれる。
論文 参考訳(メタデータ) (2024-01-17T04:19:33Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
非エントロピーと後継指標であるHansenFastを再解釈して組み合わせることで、難解な相互情報を効率的に最適化できることを示す。
提案手法は,非エントロピーを用いて環境を探索し,探索したデータを効率的に活用して動作を学習する。
論文 参考訳(メタデータ) (2021-08-31T16:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。