RaCT: Ranking-aware Chain-of-Thought Optimization for LLMs
- URL: http://arxiv.org/abs/2412.14405v2
- Date: Fri, 23 May 2025 20:25:33 GMT
- Title: RaCT: Ranking-aware Chain-of-Thought Optimization for LLMs
- Authors: Haowei Liu, Xuyang Wu, Guohao Sun, Zhiqiang Tao, Yi Fang,
- Abstract summary: Large language models (LLMs) have shown significant promise in text reranking tasks.<n>Traditional supervised fine-tuning approaches by ranking utilities can compromise LLMs' general-purpose abilities.<n>We propose a novel RaCT reranking algorithm that implements SFT with Chain-of-Thought prompting, followed by a ranking preference optimization.
- Score: 22.51924253176532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown significant promise in text reranking tasks by leveraging their advanced language understanding and reasoning capabilities. However, traditional supervised fine-tuning (SFT) approaches by ranking utilities can compromise LLMs' general-purpose abilities. To address this challenge, we propose a novel LLM-based reranking algorithm -- RaCT -- that implements SFT with Chain-of-Thought prompting, followed by a ranking preference optimization (RPO). The proposed RaCT aims to enhance ranking performance for LLMs while preserving their inherent language modeling abilities. Experimental evaluations on the three public ranking benchmarks (TREC DL, BEIR, and BRIGHT) and one LLM benchmark demonstrate the superior ranking performance of RaCT with a retained language understanding and reasoning capacity.
Related papers
- A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.
Their alignment with human values remains critical for ensuring helpful and harmless deployments.
Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.
In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.
DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Ranking Unraveled: Recipes for LLM Rankings in Head-to-Head AI Combat [7.8905223445925055]
Pairwise ranking has emerged as a new method for evaluating human preferences for large language models (LLM)<n>We explore the effectiveness of ranking systems for head-to-head comparisons of LLMs.<n>Our analysis uncovers key insights into the factors that affect ranking accuracy and efficiency.
arXiv Detail & Related papers (2024-11-19T20:16:26Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
We show that large language models (LLMs) exhibit preference biases and worrying sensitivity to prompt designs.
Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO.
arXiv Detail & Related papers (2024-06-17T09:48:53Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Prefix Text as a Yarn: Eliciting Non-English Alignment in Foundation Language Model [50.339632513018934]
supervised fine-tuning (SFT) has been a straightforward approach for tailoring the output of foundation large language model (LLM) to specific preferences.
We critically examine this hypothesis within the scope of cross-lingual generation tasks.
We introduce a novel training-free alignment method named PreTTY, which employs minimal task-related prior tokens.
arXiv Detail & Related papers (2024-04-25T17:19:36Z) - Make Large Language Model a Better Ranker [20.532118635672763]
This paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO)
ALRO is designed to bridge the gap between the capabilities of LLMs and nuanced requirements of ranking tasks.
Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
arXiv Detail & Related papers (2024-03-28T07:22:16Z) - Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks [12.629516072317331]
Syntax-Aware Fill-In-the-Middle (SAFIM) is a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task.
This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions.
arXiv Detail & Related papers (2024-03-07T05:05:56Z) - Pushing The Limit of LLM Capacity for Text Classification [27.684335455517417]
We propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM.
We show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average.
arXiv Detail & Related papers (2024-02-12T08:14:03Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Towards Off-Policy Reinforcement Learning for Ranking Policies with
Human Feedback [47.03475305565384]
We propose a new off-policy value ranking (VR) algorithm that can simultaneously maximize user long-term rewards and optimize the ranking metric offline.
We show that the EM process guides the leaned policy to enjoy the benefit of integration of the future reward and ranking metric, and learn without any online interactions.
arXiv Detail & Related papers (2024-01-17T04:19:33Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
We show that by reinterpreting and combining successorcitepHansenFast with non entropy, the intractable mutual information can be efficiently optimized.
The proposed method Active Pretraining with Successor Feature (APS) explores the environment via non entropy, and the explored data can be efficiently leveraged to learn behavior.
arXiv Detail & Related papers (2021-08-31T16:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.