Who is Helping Whom? Student Concerns about AI- Teacher Collaboration in Higher Education Classrooms
- URL: http://arxiv.org/abs/2412.14469v1
- Date: Thu, 19 Dec 2024 02:35:01 GMT
- Title: Who is Helping Whom? Student Concerns about AI- Teacher Collaboration in Higher Education Classrooms
- Authors: Bingyi Han, Simon Coghlan, George Buchanan, Dana McKay,
- Abstract summary: This paper aims to understand how students perceive the implications of AI in Education in terms of classroom collaborative dynamics.
We analyzed narratives from 65 participants, highlighting three challenges: AI decontextualizing of the educational context; AI-teacher cooperation with bias concerns and power disparities.
We argue that for effective and ethical AI-facilitated cooperative education, future AIEd design must factor in the situated nature of implementation.
- Score: 8.888004194396643
- License:
- Abstract: AI's integration into education promises to equip teachers with data-driven insights and intervene in student learning. Despite the intended advancements, there is a lack of understanding of interactions and emerging dynamics in classrooms where various stakeholders including teachers, students, and AI, collaborate. This paper aims to understand how students perceive the implications of AI in Education in terms of classroom collaborative dynamics, especially AI used to observe students and notify teachers to provide targeted help. Using the story completion method, we analyzed narratives from 65 participants, highlighting three challenges: AI decontextualizing of the educational context; AI-teacher cooperation with bias concerns and power disparities; and AI's impact on student behavior that further challenges AI's effectiveness. We argue that for effective and ethical AI-facilitated cooperative education, future AIEd design must factor in the situated nature of implementation. Designers must consider the broader nuances of the education context, impacts on multiple stakeholders, dynamics involving these stakeholders, and the interplay among potential consequences for AI systems and stakeholders. It is crucial to understand the values in the situated context, the capacity and limitations of both AI and humans for effective cooperation, and any implications to the relevant ecosystem.
Related papers
- AI in Education: Rationale, Principles, and Instructional Implications [0.0]
Generative AI, like ChatGPT, can create human-like content, prompting questions about its educational role.
The study emphasizes deliberate strategies to ensure AI complements, not replaces, genuine cognitive effort.
arXiv Detail & Related papers (2024-12-02T14:08:07Z) - Human-Centric eXplainable AI in Education [0.0]
This paper explores Human-Centric eXplainable AI (HCXAI) in the educational landscape.
It emphasizes its role in enhancing learning outcomes, fostering trust among users, and ensuring transparency in AI-driven tools.
It outlines comprehensive frameworks for developing HCXAI systems that prioritize user understanding and engagement.
arXiv Detail & Related papers (2024-10-18T14:02:47Z) - Navigating the Future of Education: Educators' Insights on AI Integration and Challenges in Greece, Hungary, Latvia, Ireland and Armenia [1.7205106391379026]
This paper aims to explore how teachers currently use AI and how it can enhance the educational process.
We conducted a cross-national study spanning Greece, Hungary, Latvia, Ireland, and Armenia, surveying 1754 educators.
arXiv Detail & Related papers (2024-08-28T10:22:05Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
This paper examines the transformative role of Large Language Models (LLMs) in education and their potential as learning tools.
The authors propose seven approaches for utilizing AI in classrooms: AI-tutor, AI-coach, AI-mentor, AI-teammate, AI-tool, AI-simulator, and AI-student.
arXiv Detail & Related papers (2023-06-13T03:36:36Z) - The AI Revolution in Education: Will AI Replace or Assist Teachers in
Higher Education? [0.0]
The study provides a comprehensive perspective on the future role of educators in the face of AI technologies.
Participants argue that human teachers possess unique qualities, such as critical thinking, creativity, and emotions, which make them irreplaceable.
The research proposes that teachers can effectively integrate AI to enhance teaching and learning without viewing it as a replacement.
arXiv Detail & Related papers (2023-05-02T03:39:34Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
We present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE)
Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes.
arXiv Detail & Related papers (2022-02-02T20:59:53Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
The Chinese University of Hong Kong (CUHK)-Jockey Club AI for the Future Project (AI4Future) co-created an AI curriculum for pre-tertiary education.
A team of 14 professors with expertise in engineering and education collaborated with 17 principals and teachers from 6 secondary schools to co-create the curriculum.
The co-creation process generated a variety of resources which enhanced the teachers knowledge in AI, as well as fostered teachers autonomy in bringing the subject matter into their classrooms.
arXiv Detail & Related papers (2021-01-19T11:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.