Heterogeneity-Aware Client Sampling: A Unified Solution for Consistent Federated Learning
- URL: http://arxiv.org/abs/2505.11304v1
- Date: Fri, 16 May 2025 14:31:36 GMT
- Title: Heterogeneity-Aware Client Sampling: A Unified Solution for Consistent Federated Learning
- Authors: Shudi Weng, Chao Ren, Ming Xiao, Mikael Skoglund,
- Abstract summary: Federated learning (FL) commonly involves clients with diverse communication and computational capabilities.<n>We reveal the fundamentally distinct mechanisms through which heterogeneous communication and computation drive inconsistency in FL.<n>We propose Federated Heterogeneity-Aware Client Sampling, FedACS, a universal method to eliminate all types of objective inconsistency.
- Score: 31.50593149242509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) commonly involves clients with diverse communication and computational capabilities. Such heterogeneity can significantly distort the optimization dynamics and lead to objective inconsistency, where the global model converges to an incorrect stationary point potentially far from the pursued optimum. Despite its critical impact, the joint effect of communication and computation heterogeneity has remained largely unexplored, due to the intrinsic complexity of their interaction. In this paper, we reveal the fundamentally distinct mechanisms through which heterogeneous communication and computation drive inconsistency in FL. To the best of our knowledge, this is the first unified theoretical analysis of general heterogeneous FL, offering a principled understanding of how these two forms of heterogeneity jointly distort the optimization trajectory under arbitrary choices of local solvers. Motivated by these insights, we propose Federated Heterogeneity-Aware Client Sampling, FedACS, a universal method to eliminate all types of objective inconsistency. We theoretically prove that FedACS converges to the correct optimum at a rate of $O(1/\sqrt{R})$, even in dynamic heterogeneous environments. Extensive experiments across multiple datasets show that FedACS outperforms state-of-the-art and category-specific baselines by 4.3%-36%, while reducing communication costs by 22%-89% and computation loads by 14%-105%, respectively.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Single-Loop Federated Actor-Critic across Heterogeneous Environments [9.276123988094698]
We study textitSingle-loop Federated Actor Critic (SFAC) where agents perform actor-critic learning in a two-level federated manner.<n>We show that the convergence error of SFAC converges to a near-stationary point, with the extent proportional to environment.
arXiv Detail & Related papers (2024-12-19T06:13:59Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.<n>FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.<n>We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks.
Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly.
This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time.
arXiv Detail & Related papers (2023-10-12T19:07:58Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
This paper presents a novel FCCL+, federated correlation and similarity learning with non-target distillation.
For heterogeneous issue, we leverage irrelevant unlabeled public data for communication.
For catastrophic forgetting in local updating stage, FCCL+ introduces Federated Non Target Distillation.
arXiv Detail & Related papers (2023-09-28T09:32:27Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) has emerged as a prominent distributed machine learning framework.
In this paper, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients.
arXiv Detail & Related papers (2023-03-27T07:57:04Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
This paper provides a framework to analyze the convergence of federated heterogeneous optimization algorithms.
We propose FedNova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
arXiv Detail & Related papers (2020-07-15T05:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.