論文の概要: AIArena: A Blockchain-Based Decentralized AI Training Platform
- arxiv url: http://arxiv.org/abs/2412.14566v2
- Date: Wed, 05 Mar 2025 11:38:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:50:15.868845
- Title: AIArena: A Blockchain-Based Decentralized AI Training Platform
- Title(参考訳): AIArena - ブロックチェーンベースの分散AIトレーニングプラットフォーム
- Authors: Zhipeng Wang, Rui Sun, Elizabeth Lui, Tuo Zhou, Yizhe Wen, Jiahao Sun,
- Abstract要約: 我々は,AI開発とアライメントを,オンチェーンインセンティブ機構を通じて民主化するように設計された分散AIトレーニングプラットフォームであるAIArenaを提案する。
我々は、公開ベースブロックチェーンSepolia testnet上でAIArenaをインスタンス化し、実装し、実世界のアプリケーションでAIArenaが実現可能であることを示す。
- 参考スコア(独自算出の注目度): 3.5828467632119305
- License:
- Abstract: The rapid advancement of AI has underscored critical challenges in its development and implementation, largely due to centralized control by a few major corporations. This concentration of power intensifies biases within AI models, resulting from inadequate governance and oversight mechanisms. Additionally, it limits public involvement and heightens concerns about the integrity of model generation. Such monopolistic control over data and AI outputs threatens both innovation and fair data usage, as users inadvertently contribute data that primarily benefits these corporations. In this work, we propose AIArena, a blockchain-based decentralized AI training platform designed to democratize AI development and alignment through on-chain incentive mechanisms. AIArena fosters an open and collaborative environment where participants can contribute models and computing resources. Its on-chain consensus mechanism ensures fair rewards for participants based on their contributions. We instantiate and implement AIArena on the public Base blockchain Sepolia testnet, and the evaluation results demonstrate the feasibility of AIArena in real-world applications.
- Abstract(参考訳): AIの急速な進歩は、その開発と実装において重要な課題を浮き彫りにした。
このパワー集中は、不適切なガバナンスと監視メカニズムによって、AIモデル内のバイアスを増大させる。
さらに、パブリックな関与を制限し、モデル生成の完全性に対する懸念を高める。
データとAIのアウトプットに対する独占的なコントロールは、イノベーションと公正なデータ使用の両方を脅かす。
本研究では,ブロックチェーンベースの分散AIトレーニングプラットフォームであるAIArenaを提案する。
AIArenaは、参加者がモデルやコンピューティングリソースにコントリビュートできるオープンでコラボレーティブな環境を育んでいる。
そのオンチェーンコンセンサスメカニズムは、参加者のコントリビューションに基づいて、公正な報酬を保証する。
我々は、公開ベースブロックチェーンSepolia testnet上でAIArenaをインスタンス化し、実装し、実世界のアプリケーションでAIArenaが実現可能であることを示す。
関連論文リスト
- SoK: Decentralized AI (DeAI) [4.651101982820699]
ブロックチェーンベースのDeAIソリューションのためのSoK(Systematization of Knowledge)を提案する。
モデルライフサイクルに基づいて既存のDeAIプロトコルを分類する分類法を提案する。
我々は、ブロックチェーン機能がAIプロセスのセキュリティ、透明性、信頼性の向上にどのように貢献するかを調査する。
論文 参考訳(メタデータ) (2024-11-26T14:28:25Z) - OML: Open, Monetizable, and Loyal AI [39.63122342758896]
OML は Open, Monetizable, Loyal AI の略である。
OMLはAI開発を民主化するためのアプローチである。
私たちの研究の重要なイノベーションは、新たな科学分野であるAIネイティブ暗号の導入です。
論文 参考訳(メタデータ) (2024-11-01T18:46:03Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、計算要求がモデルの性能よりも早く増加し、不合理な経済要求と不均等な環境フットプリントにつながるため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - Decentralized Intelligence Network (DIN) [0.0]
分散インテリジェンスネットワーク(Decentralized Intelligence Network, DIN)は、AI開発における課題に対処するために設計された理論フレームワークである。
このフレームワークは、参加者がデータのコントロールを維持し、金銭的に利益を享受し、分散型でスケーラブルなエコシステムに貢献できるようにすることで、効果的なAIトレーニングをサポートする。
論文 参考訳(メタデータ) (2024-07-02T17:40:06Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
モバイルAIGCサービスアロケーションのための分散インセンティブ機構を提案する。
我々は、AIGCサービスのRSUへの供給と、IoVコンテキスト内のサービスに対するユーザ要求のバランスを見つけるために、マルチエージェントの深層強化学習を採用している。
論文 参考訳(メタデータ) (2024-03-29T12:46:07Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Is Decentralized AI Safer? [0.0]
さまざまなグループがオープンなAIシステムを構築し、リスクを調査し、倫理について議論している。
本稿では,ブロックチェーン技術がこれらの取り組みをどのように促進し,形式化するかを実証する。
AIの分散化は、AIのリスクと倫理的懸念を軽減するだけでなく、今後の作業で考慮すべき新しい問題も導入する、と私たちは主張する。
論文 参考訳(メタデータ) (2022-11-04T01:01:31Z) - APPFLChain: A Privacy Protection Distributed Artificial-Intelligence
Architecture Based on Federated Learning and Consortium Blockchain [6.054775780656853]
APPFLChainと呼ばれる新しいシステムアーキテクチャを提案する。
これはHyperledger Fabricベースのブロックチェーンとフェデレーション学習パラダイムの統合アーキテクチャである。
我々の新しいシステムは、機密性の高い個人情報をサーバに共有する必要がないため、高いセキュリティとプライバシを維持することができる。
論文 参考訳(メタデータ) (2022-06-26T05:30:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。