Beyond Guilt: Legal Judgment Prediction with Trichotomous Reasoning
- URL: http://arxiv.org/abs/2412.14588v1
- Date: Thu, 19 Dec 2024 07:14:13 GMT
- Title: Beyond Guilt: Legal Judgment Prediction with Trichotomous Reasoning
- Authors: Kepu Zhang, Haoyue Yang, Xu Tang, Weijie Yu, Jun Xu,
- Abstract summary: We introduce LJPIV, the first benchmark dataset for Legal Judgment Prediction with Innocent Verdicts.
Adhering to the trichotomous dogmatics, we extend three widely-used legal datasets through LLM-based augmentation and manual verification.
Our experiments with state-of-the-art legal LLMs and novel strategies that integrate trichotomous reasoning into zero-shot prompting and fine-tuning reveal: (1) current legal LLMs have significant room for improvement, with even the best models achieving an F1 score of less than 0.3 on LJPIV.
- Score: 12.589047235741194
- License:
- Abstract: In legal practice, judges apply the trichotomous dogmatics of criminal law, sequentially assessing the elements of the offense, unlawfulness, and culpability to determine whether an individual's conduct constitutes a crime. Although current legal large language models (LLMs) show promising accuracy in judgment prediction, they lack trichotomous reasoning capabilities due to the absence of an appropriate benchmark dataset, preventing them from predicting innocent outcomes. As a result, every input is automatically assigned a charge, limiting their practical utility in legal contexts. To bridge this gap, we introduce LJPIV, the first benchmark dataset for Legal Judgment Prediction with Innocent Verdicts. Adhering to the trichotomous dogmatics, we extend three widely-used legal datasets through LLM-based augmentation and manual verification. Our experiments with state-of-the-art legal LLMs and novel strategies that integrate trichotomous reasoning into zero-shot prompting and fine-tuning reveal: (1) current legal LLMs have significant room for improvement, with even the best models achieving an F1 score of less than 0.3 on LJPIV; and (2) our strategies notably enhance both in-domain and cross-domain judgment prediction accuracy, especially for cases resulting in an innocent verdict.
Related papers
- Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - LegalDuet: Learning Effective Representations for Legal Judgment Prediction through a Dual-View Legal Clue Reasoning [38.94741836781938]
We propose a LegalDuet model, which pretrains language models to learn a tailored embedding space for making legal judgments.
Our experiments show that LegalDuet achieves state-of-the-art performance on the CAIL2018 dataset.
arXiv Detail & Related papers (2024-01-27T10:28:27Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Adversarially Robust Neural Legal Judgement Systems [0.0]
Legal judgment prediction is a task of predicting the outcome of court cases on a given text description of facts of cases.
For such systems to be practically helpful, they should be robust from adversarial attacks.
We propose an approach for making robust Legal Judgement Prediction systems.
arXiv Detail & Related papers (2023-07-31T21:44:48Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
We argue that trustworthy charge prediction models should take legal theories into consideration.
We propose three principles for trustworthy models should follow in this task, which are sensitive, selective, and presumption of innocence.
Our findings indicate that, while existing charge prediction models meet the selective principle on a benchmark dataset, most of them are still not sensitive enough and do not satisfy the presumption of innocence.
arXiv Detail & Related papers (2022-10-31T07:32:12Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
Legal Judgment Prediction is a longstanding and open topic in the theory and practice-of-law.
Various methods and techniques to predict legal cases and judicial actions have emerged over time.
The advent of AI Legal Reasoning will have a pronounced impact on how LJP is performed and its predictive accuracy.
arXiv Detail & Related papers (2020-09-29T00:12:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.