Learning to Generate Research Idea with Dynamic Control
- URL: http://arxiv.org/abs/2412.14626v1
- Date: Thu, 19 Dec 2024 08:28:18 GMT
- Title: Learning to Generate Research Idea with Dynamic Control
- Authors: Ruochen Li, Liqiang Jing, Chi Han, Jiawei Zhou, Xinya Du,
- Abstract summary: Large language models (LLMs) have shown promise in generating hypotheses and research ideas.
We introduce a novel framework that employs a two-stage approach combiningSupervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL)
Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
- Score: 21.30777644522451
- License:
- Abstract: The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
Related papers
- Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models [42.70951894754312]
Integration of slow-thinking mechanisms into large language models offers a promising way toward Level 2 AGI Reasoners.
We propose a self-backtracking mechanism that equips LLMs with the ability to backtrack during both training and inference.
This mechanism not only enhances reasoning ability but also efficiency by transforming slow-thinking processes into fast-thinking through self-improvement.
arXiv Detail & Related papers (2025-02-06T08:52:43Z) - CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT) framework introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'
By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time.
These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity.
arXiv Detail & Related papers (2025-02-04T15:10:33Z) - Proof Flow: Preliminary Study on Generative Flow Network Language Model Tuning for Formal Reasoning [11.268313729426627]
We present a proof of concept in the domain of formal reasoning, specifically in the Neural Theorem Proving setting.
Unlike classical reward-maximization reinforcement learning, GFlowNets have emerged as a promising approach for sampling compositional objects.
Our early results demonstrate GFlowNet fine-tuning's potential for enhancing model performance in a search setting.
arXiv Detail & Related papers (2024-10-17T05:10:12Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Rich-Observation Reinforcement Learning with Continuous Latent Dynamics [43.84391209459658]
We introduce a new theoretical framework, RichCLD (Rich-Observation RL with Continuous Latent Dynamics), in which the agent performs control based on high-dimensional observations.
Our main contribution is a new algorithm for this setting that is provably statistically and computationally efficient.
arXiv Detail & Related papers (2024-05-29T17:02:49Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Reinforcement Learning in Credit Scoring and Underwriting [7.356954349107956]
We adapt reinforcement learning principles for credit scoring, incorporating action space renewal and multi-choice actions.
We introduce two new RL-based credit underwriting algorithms to enable more informed decision-making.
arXiv Detail & Related papers (2022-12-15T06:36:14Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) is an effective approach to enhance the robustness of deep neural networks.
We demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM)
We propose a principled method to develop adversarial learning and sampling methods.
arXiv Detail & Related papers (2022-03-25T05:33:34Z) - Reinforcement Learning through Active Inference [62.997667081978825]
We show how ideas from active inference can augment traditional reinforcement learning approaches.
We develop and implement a novel objective for decision making, which we term the free energy of the expected future.
We demonstrate that the resulting algorithm successfully exploration and exploitation, simultaneously achieving robust performance on several challenging RL benchmarks with sparse, well-shaped, and no rewards.
arXiv Detail & Related papers (2020-02-28T10:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.