Reinforcement Learning in Credit Scoring and Underwriting
- URL: http://arxiv.org/abs/2212.07632v2
- Date: Thu, 27 Jun 2024 02:32:42 GMT
- Title: Reinforcement Learning in Credit Scoring and Underwriting
- Authors: Seksan Kiatsupaibul, Pakawan Chansiripas, Pojtanut Manopanjasiri, Kantapong Visantavarakul, Zheng Wen,
- Abstract summary: We adapt reinforcement learning principles for credit scoring, incorporating action space renewal and multi-choice actions.
We introduce two new RL-based credit underwriting algorithms to enable more informed decision-making.
- Score: 7.356954349107956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel reinforcement learning (RL) framework for credit underwriting that tackles ungeneralizable contextual challenges. We adapt RL principles for credit scoring, incorporating action space renewal and multi-choice actions. Our work demonstrates that the traditional underwriting approach aligns with the RL greedy strategy. We introduce two new RL-based credit underwriting algorithms to enable more informed decision-making. Simulations show these new approaches outperform the traditional method in scenarios where the data aligns with the model. However, complex situations highlight model limitations, emphasizing the importance of powerful machine learning models for optimal performance. Future research directions include exploring more sophisticated models alongside efficient exploration mechanisms.
Related papers
- Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
We present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning.
Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models.
arXiv Detail & Related papers (2025-01-31T18:57:08Z) - Towards General-Purpose Model-Free Reinforcement Learning [40.973429772093155]
Reinforcement learning (RL) promises a framework for near-universal problem-solving.
In practice, RL algorithms are often tailored to specific benchmarks.
We propose a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings.
arXiv Detail & Related papers (2025-01-27T15:36:37Z) - Learning to Generate Research Idea with Dynamic Control [21.30777644522451]
Large language models (LLMs) have shown promise in generating hypotheses and research ideas.
We introduce a novel framework that employs a two-stage approach combiningSupervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL)
Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
arXiv Detail & Related papers (2024-12-19T08:28:18Z) - Are Expressive Models Truly Necessary for Offline RL? [18.425797519857113]
Sequential modeling requires capturing accurate dynamics across long horizons in trajectory data to ensure reasonable policy performance.
We show that lightweight models as simple as shallow 2-layers can enjoy accurate dynamics consistency and significantly reduced sequential modeling errors.
arXiv Detail & Related papers (2024-12-15T17:33:56Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
We propose a novel model-based reinforcement learning algorithm, called BrIdging Reality and Dream (BIRD)
It maximizes the mutual information between imaginary and real trajectories so that the policy improvement learned from imaginary trajectories can be easily generalized to real trajectories.
We demonstrate that our approach improves sample efficiency of model-based planning, and achieves state-of-the-art performance on challenging visual control benchmarks.
arXiv Detail & Related papers (2020-10-23T03:22:01Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.