論文の概要: MUSTER: Longitudinal Deformable Registration by Composition of Consecutive Deformations
- arxiv url: http://arxiv.org/abs/2412.14671v1
- Date: Thu, 19 Dec 2024 09:22:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:29:43.630547
- Title: MUSTER: Longitudinal Deformable Registration by Composition of Consecutive Deformations
- Title(参考訳): MUSTER: 連続変形の構成による縦方向変形可能なレジストレーション
- Authors: Edvard O. S. Grødem, Donatas Sederevičius, Esten H. Leonardsen, Bradley J. MacIntosh, Atle Bjørnerud, Till Schellhorn, Øystein Sørensen, Inge Amlien, Pablo F. Garrido, Anders M. Fjell,
- Abstract要約: 本研究は,医用画像の経時的変化解析手法であるMulti-Session Temporal Registration (MUSTER)を紹介する。
MUSTERは、縦方向の変形を回復するために、2つ以上のイメージングセッションを組み込むことで、従来のペアの登録を改善する。
MUSTERはT1強調画像から神経変性のパターンを効果的に同定し,これらの変化が認知の変化と相関していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Longitudinal imaging allows for the study of structural changes over time. One approach to detecting such changes is by non-linear image registration. This study introduces Multi-Session Temporal Registration (MUSTER), a novel method that facilitates longitudinal analysis of changes in extended series of medical images. MUSTER improves upon conventional pairwise registration by incorporating more than two imaging sessions to recover longitudinal deformations. Longitudinal analysis at a voxel-level is challenging due to effects of a changing image contrast as well as instrumental and environmental sources of bias between sessions. We show that local normalized cross-correlation as an image similarity metric leads to biased results and propose a robust alternative. We test the performance of MUSTER on a synthetic multi-site, multi-session neuroimaging dataset and show that, in various scenarios, using MUSTER significantly enhances the estimated deformations relative to pairwise registration. Additionally, we apply MUSTER on a sample of older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. The results show that MUSTER can effectively identify patterns of neuro-degeneration from T1-weighted images and that these changes correlate with changes in cognition, matching the performance of state of the art segmentation methods. By leveraging GPU acceleration, MUSTER efficiently handles large datasets, making it feasible also in situations with limited computational resources.
- Abstract(参考訳): 縦方向のイメージングにより、時間とともに構造の変化を研究することができる。
このような変化を検出する1つのアプローチは、非線形画像登録である。
本研究では,医療画像の連続的変化の経時的解析を容易にするMulti-Session Temporal Registration(MUSTER)を提案する。
MUSTERは、縦方向の変形を回復するために、2つ以上のイメージングセッションを組み込むことで、従来のペアの登録を改善する。
ボクセルレベルの縦断解析は、画像コントラストの変化と、セッション間の機器的および環境的偏見の影響により困難である。
画像類似度指標としての局所正規化相互相関はバイアスのある結果をもたらすことを示すとともに,頑健な代替案を提案する。
合成多地点多セッションニューロイメージングデータセット上でMUSTERの性能を検証し、様々なシナリオにおいて、MUSTERを用いることで、ペアの登録に対する推定変形が著しく向上することを示す。
さらに,アルツハイマー病神経画像イニシアチブ(ADNI)研究の高齢者を対象にMUSTERを適用した。
その結果、MUSTERはT1強調画像から神経変性のパターンを効果的に識別でき、これらの変化は認識の変化と相関し、最先端のセグメンテーション手法の性能と一致することが示された。
GPUアクセラレーションを活用することで、MUSTERは大規模なデータセットを効率的に処理し、限られた計算リソースを持つ状況でも実現可能である。
関連論文リスト
- Deformation-Recovery Diffusion Model (DRDM): Instance Deformation for Image Manipulation and Synthesis [13.629617915974531]
変形-回復拡散モデル (DRDM) は, 変形拡散と回復に基づく拡散モデルである。
DRDMは、不合理な変形成分の回復を学ぶために訓練され、ランダムに変形した各画像を現実的な分布に復元する。
心MRIおよび肺CTによる実験結果から,DRDMは多種多様(10%以上の画像サイズ変形スケール)の変形を生じさせることが示された。
論文 参考訳(メタデータ) (2024-07-10T01:26:48Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Variational Inference for Quantifying Inter-observer Variability in
Segmentation of Anatomical Structures [12.138198227748353]
ほとんどのセグメンテーション法は、単純にイメージからその単一セグメンテーションマップへのマッピングをモデル化し、アノテータの不一致を考慮に入れない。
特定のMR画像から得られる可視分割写像の分布をモデル化する新しい変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-18T16:33:33Z) - Contrast Adaptive Tissue Classification by Alternating Segmentation and
Synthesis [0.21111026813272174]
本稿では,訓練データのコントラスト特性を入力画像に適応する交互セグメンテーションと合成ステップを用いたアプローチについて述べる。
このアプローチの顕著な利点は、そのコントラスト特性に適応するために取得プロトコルの1つの例だけが必要であることである。
論文 参考訳(メタデータ) (2021-03-04T00:25:24Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
本稿では,複数の画像の同時登録を可能にするために,現在の学習ベース画像登録を拡張することを提案する。
本稿では,複数の画像の粘性測地線平均への登録と,利用可能な画像のいずれかを固定画像として使用可能な登録を両立できる汎用的な数学的枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-01T07:37:28Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。