Creation of AI-driven Smart Spaces for Enhanced Indoor Environments -- A Survey
- URL: http://arxiv.org/abs/2412.14708v1
- Date: Thu, 19 Dec 2024 10:20:34 GMT
- Title: Creation of AI-driven Smart Spaces for Enhanced Indoor Environments -- A Survey
- Authors: Aygün Varol, Naser Hossein Motlagh, Mirka Leino, Sasu Tarkoma, Johanna Virkki,
- Abstract summary: Smart spaces are ubiquitous computing environments that integrate diverse sensing and communication technologies to enhance space functionality, optimize energy utilization, and improve user comfort and well-being.
The integration of emerging AI methodologies into these environments facilitates the formation of AI-driven smart spaces.
We present a systematic survey of existing research on the foundational components of AI-driven smart spaces, including sensor technologies, data communication protocols, sensor network management and maintenance strategies, as well as the data collection, processing and analytics.
- Score: 2.4289467021689317
- License:
- Abstract: Smart spaces are ubiquitous computing environments that integrate diverse sensing and communication technologies to enhance space functionality, optimize energy utilization, and improve user comfort and well-being. The integration of emerging AI methodologies into these environments facilitates the formation of AI-driven smart spaces, which further enhance functionalities of the spaces by enabling advanced applications such as personalized comfort settings, interactive living spaces, and automatization of the space systems, all resulting in enhanced indoor experiences of the users. In this paper, we present a systematic survey of existing research on the foundational components of AI-driven smart spaces, including sensor technologies, data communication protocols, sensor network management and maintenance strategies, as well as the data collection, processing and analytics. Given the pivotal role of AI in establishing AI-powered smart spaces, we explore the opportunities and challenges associated with traditional machine learning (ML) approaches, such as deep learning (DL), and emerging methodologies including large language models (LLMs). Finally, we provide key insights necessary for the development of AI-driven smart spaces, propose future research directions, and sheds light on the path forward.
Related papers
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications [17.624263707781655]
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management.
This article delves into the foundational concepts and cutting-edge developments in these fields.
By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management.
arXiv Detail & Related papers (2024-10-02T06:24:51Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Ambient Technology & Intelligence [0.0]
Ambient intelligence refers to technological enhanced electronic environments which are both responsive and sensitive to the presence of people within their environment.
Environments that are integrated with ambient intelligence tends to adapt to the needs of individuals within the environment in an unobtrusive manner in such a way as to enhance everyday life.
This capability was made possible because it is a concept that combines several key technologies such as IoT (Internet of Things) technology, sensor technology, AI (Artificial Intelligence) and advanced human-computer interaction all embedded and integrated together with the environment.
arXiv Detail & Related papers (2023-05-18T05:55:41Z) - Integrating Generative Artificial Intelligence in Intelligent Vehicle
Systems [4.724940029079736]
As the automotive industry progressively integrates AI, generative artificial intelligence technologies hold the potential to revolutionize user interactions.
We provide an overview of current applications of generative artificial intelligence in the automotive domain, emphasizing speech, audio, vision, and multimodal interactions.
We outline critical future research areas, including domain adaptability, alignment, multimodal integration and others, as well as, address the challenges and risks associated with ethics.
arXiv Detail & Related papers (2023-05-15T09:09:40Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - On-Premise Artificial Intelligence as a Service for Small and Medium
Size Setups [0.541530201129053]
Artificial Intelligence (AI) technologies are moving from customized deployments in specific domains towards generic solutions horizontally permeating vertical domains and industries.
While various commercial solutions offer user friendly and easy to use AI as a Service (AI), functionality-wise enabling the democratization of such ecosystems are lagging behind.
In this chapter, we discuss AI functionality and corresponding technology stack and analyze possible realizations using open source user friendly technologies.
arXiv Detail & Related papers (2022-10-12T09:28:02Z) - Artificial Intelligence and Natural Language Processing and
Understanding in Space: Four ESA Case Studies [48.53582660901672]
We present a methodological framework based on artificial intelligence and natural language processing and understanding to automatically extract information from Space documents.
Case studies are implemented across different functional areas of ESA, including Mission Design, Quality Assurance, Long-Term Data Preservation, and the Open Space Innovation Platform.
arXiv Detail & Related papers (2022-10-07T15:50:17Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.