Surrogate-assisted multi-objective design of complex multibody systems
- URL: http://arxiv.org/abs/2412.14854v1
- Date: Thu, 19 Dec 2024 13:48:49 GMT
- Title: Surrogate-assisted multi-objective design of complex multibody systems
- Authors: Augustina C. Amakor, Manuel B. Berkemeier, Meike Wohlleben, Walter Sextro, Sebastian Peitz,
- Abstract summary: We present a back-and-forth approach between surrogate modeling and multi-objective optimization.
We compare different strategies regarding multi-objective optimization, sampling and also surrogate modeling.
- Score: 1.1650821883155187
- License:
- Abstract: The optimization of large-scale multibody systems is a numerically challenging task, in particular when considering multiple conflicting criteria at the same time. In this situation, we need to approximate the Pareto set of optimal compromises, which is significantly more expensive than finding a single optimum in single-objective optimization. To prevent large costs, the usage of surrogate models, constructed from a small but informative number of expensive model evaluations, is a very popular and widely studied approach. The central challenge then is to ensure a high quality (that is, near-optimality) of the solutions that were obtained using the surrogate model, which can be hard to guarantee with a single pre-computed surrogate. We present a back-and-forth approach between surrogate modeling and multi-objective optimization to improve the quality of the obtained solutions. Using the example of an expensive-to-evaluate multibody system, we compare different strategies regarding multi-objective optimization, sampling and also surrogate modeling, to identify the most promising approach in terms of computational efficiency and solution quality.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization [16.54335356612006]
The goal of model merging is to combine multiple models, each excelling in different tasks, into a single model that outperforms any of the individual source models.
Existing methods rely heavily on human knowledge or intuition.
It's difficult to obtain the great model merging configuration in limited evaluations.
arXiv Detail & Related papers (2024-06-29T16:34:23Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
We introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context.
RiC only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time.
arXiv Detail & Related papers (2024-02-15T18:58:31Z) - Multi-surrogate Assisted Efficient Global Optimization for Discrete
Problems [0.9127162004615265]
This paper investigates the possible benefit of a concurrent utilization of multiple simulation-based surrogate models to solve discrete problems.
Our findings indicate that SAMA-DiEGO can rapidly converge to better solutions on a majority of the test problems.
arXiv Detail & Related papers (2022-12-13T09:10:08Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.