論文の概要: Position: A taxonomy for reporting and describing AI security incidents
- arxiv url: http://arxiv.org/abs/2412.14855v1
- Date: Thu, 19 Dec 2024 13:50:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 18:44:16.149223
- Title: Position: A taxonomy for reporting and describing AI security incidents
- Title(参考訳): ポジション:AIセキュリティインシデントを報告し記述するための分類
- Authors: Lukas Bieringer, Kevin Paeth, Andreas Wespi, Kathrin Grosse,
- Abstract要約: 業界,プロバイダ,ユーザ,研究者といった,さまざまな利害関係者の関心やニーズを考慮した提案を行うべきだ,と私たちは主張する。
本稿では,マシンの可読性や既存のデータベースとのリンク性といった要求に沿った分類法を提案する。
- 参考スコア(独自算出の注目度): 6.815819026414774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI systems are vulnerable to attacks, and corresponding AI security incidents have been described. Although a collection of safety incidents around AI will become a regulatory requirement, there is no proposal to collect AI security incidents. In this position paper, we argue that a proposal should be made, taking into account the interests and needs of different stakeholders: industry, providers, users, and researchers. We thus attempt to close this gap and propose a taxonomy alongside its requirements like machine readability and link-ability with existing databases. We aim to spark discussions and enable discussion of which information is feasible, necessary, and possible to report and share within and outside organizations using AI.
- Abstract(参考訳): AIシステムは攻撃に対して脆弱であり、対応するAIセキュリティインシデントが説明されている。
AI関連の安全インシデントの集合が規制要件になるが、AIセキュリティインシデントを集める提案はない。
本稿では,業界,プロバイダ,ユーザ,研究者など,さまざまな利害関係者の関心やニーズを考慮した提案を行うことを論じる。
そこで我々は、このギャップを埋め、マシンの可読性や既存のデータベースとのリンク性といった要求に沿った分類法を提案する。
我々は、議論を刺激し、どの情報が実現可能で、必要であり、AIを使って組織内外の情報を報告し、共有できるかについての議論を可能にすることを目的としています。
関連論文リスト
- AI threats to national security can be countered through an incident regime [55.2480439325792]
我々は、AIシステムからの潜在的な国家安全保障脅威に対抗することを目的とした、法的に義務付けられたポストデプロイAIインシデントシステムを提案する。
提案したAIインシデント体制は,3段階に分けられる。第1フェーズは,‘AIインシデント’とみなすような,新たな運用方法を中心に展開される。
第2フェーズと第3フェーズでは、AIプロバイダが政府機関にインシデントを通知し、政府機関がAIプロバイダのセキュリティおよび安全手順の修正に関与するべきだ、と説明されている。
論文 参考訳(メタデータ) (2025-03-25T17:51:50Z) - In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI [93.33036653316591]
我々はシステムの安全性を高めるために3つの介入を要求します。
まず、標準化されたAI欠陥レポートと研究者へのエンゲージメントのルールを用いることを提案する。
第2に,GPAIシステムプロバイダが広視野欠陥開示プログラムを採用することを提案する。
第3に,欠陥報告の分布を調整するための改良されたインフラの開発を提唱する。
論文 参考訳(メタデータ) (2025-03-21T05:09:46Z) - The BIG Argument for AI Safety Cases [4.0675753909100445]
BIGの議論は、さまざまな能力、自律性、臨界性を持つAIシステムの安全ケースを構築するためのシステム全体のアプローチを採用する。
安全性と、プライバシーや株式といった他の重要な倫理的問題に対処することでバランスがとれる。
安全保証の社会的、倫理的、技術的側面を、追跡可能で説明可能な方法でまとめることによって統合される。
論文 参考訳(メタデータ) (2025-03-12T11:33:28Z) - Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems [0.0]
AIは重要な技術として登場し、さまざまなアプリケーションにまたがる進歩を加速している。
AIコンポーネントを組み込んだシステムの安全性を確保するという課題は、極めて重要である。
本稿では,AIシステムにおける安全保証事例作成を支援する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T16:38:16Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - AI Cards: Towards an Applied Framework for Machine-Readable AI and Risk Documentation Inspired by the EU AI Act [2.1897070577406734]
その重要性にもかかわらず、AI法に沿ったAIとリスクドキュメントの作成を支援するための標準やガイドラインが欠如している。
提案するAIカードは,AIシステムの意図した使用を表現するための,新しい総合的なフレームワークである。
論文 参考訳(メタデータ) (2024-06-26T09:51:49Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Safety Cases: How to Justify the Safety of Advanced AI Systems [5.097102520834254]
AIシステムがより高度化するにつれ、企業や規制機関は、トレーニングとデプロイが安全かどうかという難しい決定を下すことになる。
安全事例を整理する枠組みを提案し,安全性を正当化するための議論の4つのカテゴリについて論じる。
我々は、各カテゴリにおける議論の具体的な例を評価し、AIシステムが安全にデプロイ可能であることを正当化するために、議論をどのように組み合わせるかを概説する。
論文 参考訳(メタデータ) (2024-03-15T16:53:13Z) - Adversarial Machine Learning and Cybersecurity: Risks, Challenges, and
Legal Implications [0.4665186371356556]
2022年7月、ジョージタウン大学のCenter for Security and Emerging TechnologyとStanford Cyber Policy CenterのGeopolitics, Technology, and Governanceプログラムが、人工知能システムの脆弱性と従来型のソフトウェア脆弱性との関係を調べる専門家のワークショップを開催した。
議論されたトピックは、AI脆弱性が標準的なサイバーセキュリティプロセスの下でどのように扱われるか、現在の障壁がAI脆弱性に関する情報の正確な共有を妨げていること、AIシステムに対する敵対的攻撃に関連する法的問題、政府支援がAI脆弱性の管理と緩和を改善する可能性のある潜在的な領域である。
論文 参考訳(メタデータ) (2023-05-23T22:27:53Z) - Adversarial AI in Insurance: Pervasiveness and Resilience [0.0]
本稿では,AIシステムを騙し,誤った出力を生成するために,修正された入力データを作成することからなる敵攻撃について検討する。
防御法や予防システムについては,少数発・ゼロ発のマルチラベリングを考慮し論じる。
関心が高まりつつある関連するトピックは、AIとMLコンポーネントを組み込んだシステムの検証と検証である。
論文 参考訳(メタデータ) (2023-01-17T08:49:54Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z) - Vulnerabilities of Connectionist AI Applications: Evaluation and Defence [0.0]
この記事では、コネクショナリスト人工知能(AI)アプリケーションのITセキュリティを扱い、完全性への脅威に焦点を当てます。
脅威の包括的リストと軽減の可能性は、最先端の文献をレビューすることによって提示される。
緩和に関する議論は同様に、AIシステム自体のレベルに限定されず、むしろサプライチェーンの文脈でAIシステムを見ることを提唱している。
論文 参考訳(メタデータ) (2020-03-18T12:33:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。