Quantum SWAP gate realized with CZ and iSWAP gates in a superconducting architecture
- URL: http://arxiv.org/abs/2412.15022v1
- Date: Thu, 19 Dec 2024 16:32:36 GMT
- Title: Quantum SWAP gate realized with CZ and iSWAP gates in a superconducting architecture
- Authors: Christian Križan, Janka Biznárová, Liangyu Chen, Emil Hogedal, Amr Osman, Christopher W. Warren, Sandoko Kosen, Hang-Xi Li, Tahereh Abad, Anuj Aggarwal, Marco Caputo, Jorge Fernández-Pendás, Akshay Gaikwad, Leif Grönberg, Andreas Nylander, Robert Rehammar, Marcus Rommel, Olga I. Yuzephovich, Anton Frisk Kockum, Joonas Govenius, Giovanna Tancredi, Jonas Bylander,
- Abstract summary: It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits.
Access to a gate set that includes support for the CZ-type, affirming the iSWAP-type, and the SWAP-type families of gates, renders conversions between these gate families unnecessary during compilation.
We experimentally demonstrate that a SWAP gate can be decomposed into one iSWAP gate followed by one CZ gate, a more efficient compilation strategy.
- Score: 2.5849951815113874
- License:
- Abstract: It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not seen with existing platforms. In particular, access to a gate set that includes support for the CZ-type, the iSWAP-type, and the SWAP-type families of gates, renders conversions between these gate families unnecessary during compilation as any two-qubit Clifford gate can be executed using at most one two-qubit gate from this set, plus additional single-qubit gates. We experimentally demonstrate that a SWAP gate can be decomposed into one iSWAP gate followed by one CZ gate, affirming a more efficient compilation strategy over the conventional approach that relies on three iSWAP or three CZ gates to replace a SWAP gate. Our implementation makes use of a superconducting quantum processor design based on fixed-frequency transmon qubits coupled together by a parametrically modulated tunable transmon coupler, extending this platform's native gate set so that any two-qubit Clifford unitary matrix can be realized using no more than two two-qubit gates and single-qubit gates.
Related papers
- Efficient Implementation of Arbitrary Two-Qubit Gates via Unified Control [30.657387004518604]
The native gate set governs the accuracy of basic quantum operations and dictates the complexity of implementing quantum algorithms.
Here, we experimentally demonstrate a unified and highly versatile gate scheme capable of generating arbitrary two-qubit gates.
We achieve high fidelities averaging $99.37 pm 0.07%$ across a wide range of commonly used two-qubit unitaries.
Our results highlight that fully exploiting the capabilities of a single interaction can yield a comprehensive and highly accurate gate set.
arXiv Detail & Related papers (2025-02-05T21:00:34Z) - Direct Implementation of High-Fidelity Three-Qubit Gates for Superconducting Processor with Tunable Couplers [18.682049956714156]
Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary.
We propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-Z (CCZ) gate in a flip-chip superconducting quantum processor with tunable couplers.
arXiv Detail & Related papers (2025-01-30T12:57:57Z) - A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots [5.228819198411081]
We propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types.
Our gate scheme limits the parameter requirements of all essential two-qubit gates to a common JDeltaE_Z region.
With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources.
arXiv Detail & Related papers (2024-04-29T13:37:43Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Fast multi-qubit gates through simultaneous two-qubit gates [0.5949967357689445]
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity.
One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates.
We show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits.
arXiv Detail & Related papers (2021-08-25T17:24:31Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - Benchmarking the noise sensitivity of different parametric two-qubit
gates in a single superconducting quantum computing platform [0.0]
A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity.
We benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler.
We argue that spurious $ZZ$-type couplings are the dominant error source for the iSWAP gate.
arXiv Detail & Related papers (2020-05-12T11:38:41Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.