Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations
- URL: http://arxiv.org/abs/2110.04383v1
- Date: Fri, 8 Oct 2021 21:25:47 GMT
- Title: Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations
- Authors: Keir Adams, Lagnajit Pattanaik, Connor W. Coley
- Abstract summary: We design an SE(3)-invariant model that processes torsion angles of a 3D molecular conformer.
We test our model on four benchmarks: contrastive learning to distinguish conformers of different stereoisomers in a learned latent space, classification of chiral centers as R/S, prediction of how enantiomers rotate circularly polarized light, and ranking enantiomers by their docking scores in an enantiosensitive protein pocket.
- Score: 2.17167311150369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular chirality, a form of stereochemistry most often describing relative
spatial arrangements of bonded neighbors around tetrahedral carbon centers,
influences the set of 3D conformers accessible to the molecule without changing
its 2D graph connectivity. Chirality can strongly alter (bio)chemical
interactions, particularly protein-drug binding. Most 2D graph neural networks
(GNNs) designed for molecular property prediction at best use atomic labels to
na\"ively treat chirality, while E(3)-invariant 3D GNNs are invariant to
chirality altogether. To enable representation learning on molecules with
defined stereochemistry, we design an SE(3)-invariant model that processes
torsion angles of a 3D molecular conformer. We explicitly model conformational
flexibility by integrating a novel type of invariance to rotations about
internal molecular bonds into the architecture, mitigating the need for
multi-conformer data augmentation. We test our model on four benchmarks:
contrastive learning to distinguish conformers of different stereoisomers in a
learned latent space, classification of chiral centers as R/S, prediction of
how enantiomers rotate circularly polarized light, and ranking enantiomers by
their docking scores in an enantiosensitive protein pocket. We compare our
model, Chiral InterRoto-Invariant Neural Network (ChIRo), with 2D and 3D GNNs
to demonstrate that our model achieves state of the art performance when
learning chiral-sensitive functions from molecular structures.
Related papers
- Many-body Expansion Based Machine Learning Models for Octahedral Transition Metal Complexes [0.0]
We present a modification to autocorrelation for machine learning various spin state dependent properties of octa transition metal complexes (TMCs)
The new strategy is based on the many-body expansion (MBE) and allows one to tune the captured stereoisomer information by changing the truncation order of the MBE.
Because the new approach incorporates insights from electronic structure theory, these models exhibit systematic generalization from homoleptic to heteroleptic complexes.
arXiv Detail & Related papers (2024-10-12T21:54:22Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning [27.713870291922333]
We develop an SE(3) equivariant hypergraph neural network architecture tailored for advanced molecular representation learning.
SE3Set has shown performance on par with state-of-the-art (SOTA) models for small molecule datasets.
It excels on the MD22 dataset, achieving a notable improvement of approximately 20% in accuracy across all molecules.
arXiv Detail & Related papers (2024-05-26T10:43:16Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
We introduce the first MoleculAR Conformer Ensemble Learning benchmark to thoroughly evaluate the potential of learning on conformer ensembles.
Our findings reveal that direct learning from an conformer space can improve performance on a variety of tasks and models.
arXiv Detail & Related papers (2023-09-29T20:06:46Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
We describe a heterogeneous reconstruction method based on an atomistic representation whose deformation is reduced to a handful of collective motions.
We show for each distribution that our approach is able to recapitulate the intermediate atomic models with atomic-level accuracy.
arXiv Detail & Related papers (2022-09-29T22:35:35Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.