A Finite-Time Quantum Otto Engine subject to Control Noise and Enhancement Techniques
- URL: http://arxiv.org/abs/2412.15196v1
- Date: Thu, 19 Dec 2024 18:58:14 GMT
- Title: A Finite-Time Quantum Otto Engine subject to Control Noise and Enhancement Techniques
- Authors: Theodore McKeever, Owen Diba, Ahsan Nazir,
- Abstract summary: We evaluate the impact of control noise on a quantum Otto cycle.
The existence of white noise on the controls is shown to negatively affect average engine performance.
- Score: 0.0
- License:
- Abstract: With the development of any quantum technology comes a need for precise control of quantum systems. Here, we evaluate the impact of control noise on a quantum Otto cycle. Whilst it is postulated that noiseless quantum engines can approach maximal Otto efficiency in finite times, the existence of white noise on the controls is shown to negatively affect average engine performance. Two methods of quantum enhancement, counterdiabatic driving and quantum lubrication, are implemented and found to improve the performance of the noisy cycle only in specified parameter regimes. To gain insight into performance fluctuations, projective energy measurements are used to construct a noise-averaged probability distribution without assuming full thermalisation or adiabaticity. From this, the variances in thermodynamic currents are observed to increase as average power and efficiency improve, and are also shown to be consistent with known bounds from thermodynamic uncertainty relations. Lastly, by comparing the average functioning of the unmonitored engine to a projectively-measured engine cycle, the role of coherence in work extraction for this quantum engine model is investigated.
Related papers
- Power-efficiency trade-off for finite-time quantum harmonic Otto heat engine via phase-space approach [0.05115559623386963]
We derive a power-efficiency trade-off relation for a paradigmatic quantum engine operating within a finite time.
Our results reveal that the power of the quantum engine vanishes as the efficiency approaches the quantum mechanical efficiency bound.
arXiv Detail & Related papers (2025-01-20T07:42:23Z) - Exploring the role of criticality in the quantum Otto cycle fueled by the anisotropic quantum Rabi-Stark model [0.0]
Quantum heat machines, encompassing heat engines, refrigerators, heaters, and accelerators, represent the forefront of quantum thermodynamics.
This paper investigates a quantum Otto engine operating in both ideal and finite-time scenarios.
By focusing on quantum heat engines, our study reveals that these phase transitions critically modulate the efficiency and power of AQRSM-based engines.
arXiv Detail & Related papers (2024-07-12T06:36:57Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Thermal divergences of quantum measurement engine [6.2855988683171375]
The work output, quantum heat, and efficiency are derived, highlighting the important role of the thermal divergence recently reappearing in open quantum systems.
The spin-engine architecture offers a comprehensive platform for future investigations of extracting work from quantum measurement.
arXiv Detail & Related papers (2021-09-22T15:35:40Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Light-matter quantum Otto engine in finite time [0.0]
We study a quantum Otto engine at finite time, where the working substance is composed of a two-level system interacting with a harmonic oscillator.
We relate the total work extracted and the efficiency at maximum power with the quantum correlations embedded in the working substance.
We find that the engine can overcome the Curzon-Ahlborn efficiency when the working substance is in the ultrastrong coupling regime.
arXiv Detail & Related papers (2021-02-21T08:40:12Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.