論文の概要: LitLLMs, LLMs for Literature Review: Are we there yet?
- arxiv url: http://arxiv.org/abs/2412.15249v2
- Date: Fri, 21 Mar 2025 14:56:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 15:40:09.878675
- Title: LitLLMs, LLMs for Literature Review: Are we there yet?
- Title(参考訳): LitLLMs, LLMs for Literature Review: まだありますか?
- Authors: Shubham Agarwal, Gaurav Sahu, Abhay Puri, Issam H. Laradji, Krishnamurthy DJ Dvijotham, Jason Stanley, Laurent Charlin, Christopher Pal,
- Abstract要約: 本稿では,近年の大規模言語モデルのゼロショット能力について,要約に基づく文献レビューの執筆支援について考察する。
まず LLM を用いて,論文の要約から意味のあるキーワードを抽出する新しい2段階探索手法を提案する。
生成段階では、まずレビューの計画を概説し、次に実際のレビューを生成するためのステップを実行する2段階のアプローチを提案する。
- 参考スコア(独自算出の注目度): 15.785989492351684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
- Abstract(参考訳): 文学レビューは科学研究の不可欠な要素であるが、近年の研究論文が流入しているため、これらは時間集約的で執筆が困難なままである。
本稿では,最近のLarge Language Models (LLM) のゼロショット能力について,要約に基づく文献レビューの執筆を支援するために検討する。
私たちはタスクを2つのコンポーネントに分解します。
1.クエリを抽象化した関連作業の検索、及び
2. 得られた結果に基づいて文献レビューを書くこと。
両コンポーネントにおいてLLMがいかに有効かを分析する。
まず LLM を用いて論文の要約から意味のあるキーワードを抽出し,外部知識ベースを問合せして潜在的に関連のある論文を検索する手法を提案する。
さらに,帰属による帰属型リグレード機構について検討し,LLMの意思決定プロセスに関する洞察を提供しながら,正規化リコールの2倍化を示す。
生成段階では、まずレビューの計画を概説し、次に実際のレビューを生成するためのステップを実行する2段階のアプローチを提案する。
異なるLCMに基づく文献レビュー手法を評価するために,ゼロショット評価におけるテストセット汚染を回避するために,新たにリリースされたLCMで使用するためのプロトコルを用いて,arXiv論文からテストセットを作成する。
我々はこの評価プロトコルを公開し、さらなる研究と開発を促進する。
実験の結果, LLMは, 作業が検索・計画のより小さな構成要素に分解された場合に, 文献レビューを書く上で有望な可能性を示唆している。
デモシステムとツールキットを含む私たちのプロジェクトページは、ここでアクセスできます。
関連論文リスト
- Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol [83.90769864167301]
文献レビュー表は、科学論文の集合を要約し比較するために欠かせないものである。
学術論文の収集にあたり,ユーザの情報ニーズを最大限に満たす表を作成するタスクについて検討する。
我々の貢献は、現実世界で遭遇する3つの重要な課題に焦点を当てている: (i)ユーザープロンプトは、しばしば未特定である; (ii)検索された候補論文は、しばしば無関係な内容を含む; (iii)タスク評価は、浅いテキスト類似性技術を超えて進むべきである。
論文 参考訳(メタデータ) (2025-04-14T14:52:28Z) - Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition [2.048226951354646]
大規模言語モデル(LLM)は、文学レビューを書くことに関わる複雑なプロセスを自動化するための潜在的な解決策として登場した。
本研究は,文学書記の3つの重要な課題において,LLMの性能を自動評価する枠組みを提案する。
論文 参考訳(メタデータ) (2024-12-18T08:42:25Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
大規模言語モデル(LLM)がピアレビューに統合された。
未確認のLLMの採用は、ピアレビューシステムの完全性に重大なリスクをもたらす。
5%のレビューを操作すれば、論文の12%が上位30%のランキングでその地位を失う可能性がある。
論文 参考訳(メタデータ) (2024-12-02T16:55:03Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
本稿では,セマンティック・オーバーラップ・サマリゼーション(SOS)タスクにおいて,Large Language Models (LLM) を包括的に評価する。
本稿では, ROUGE, BERTscore, SEM-F1$などの定評ある指標を, 2種類の代替物語のデータセット上で報告する。
論文 参考訳(メタデータ) (2024-02-26T20:33:50Z) - Large Language Models: A Survey [66.39828929831017]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - LitLLM: A Toolkit for Scientific Literature Review [15.785989492351684]
本稿では,RAG(Retrieval Augmented Generation)の原理に基づくツールキットを提案する。
本システムはまず,関連論文を検索するWeb検索を開始する。
第2に、ユーザが提供する抽象化に基づいて、検索した論文を再ランクする。
第3に、再ランクされた結果と要約に基づいて、関連する作業部を生成する。
論文 参考訳(メタデータ) (2024-02-02T02:41:28Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。