論文の概要: LitLLM: A Toolkit for Scientific Literature Review
- arxiv url: http://arxiv.org/abs/2402.01788v2
- Date: Fri, 21 Mar 2025 14:49:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:54:38.065729
- Title: LitLLM: A Toolkit for Scientific Literature Review
- Title(参考訳): LitLLM: 科学文献レビューのためのツールキット
- Authors: Shubham Agarwal, Gaurav Sahu, Abhay Puri, Issam H. Laradji, Krishnamurthy DJ Dvijotham, Jason Stanley, Laurent Charlin, Christopher Pal,
- Abstract要約: 本稿では,RAG(Retrieval Augmented Generation)の原理に基づくツールキットを提案する。
本システムはまず,関連論文を検索するWeb検索を開始する。
第2に、ユーザが提供する抽象化に基づいて、検索した論文を再ランクする。
第3に、再ランクされた結果と要約に基づいて、関連する作業部を生成する。
- 参考スコア(独自算出の注目度): 15.785989492351684
- License:
- Abstract: Conducting literature reviews for scientific papers is essential for understanding research, its limitations, and building on existing work. It is a tedious task which makes an automatic literature review generator appealing. Unfortunately, many existing works that generate such reviews using Large Language Models (LLMs) have significant limitations. They tend to hallucinate-generate non-factual information-and ignore the latest research they have not been trained on. To address these limitations, we propose a toolkit that operates on Retrieval Augmented Generation (RAG) principles, specialized prompting and instructing techniques with the help of LLMs. Our system first initiates a web search to retrieve relevant papers by summarizing user-provided abstracts into keywords using an off-the-shelf LLM. Authors can enhance the search by supplementing it with relevant papers or keywords, contributing to a tailored retrieval process. Second, the system re-ranks the retrieved papers based on the user-provided abstract. Finally, the related work section is generated based on the re-ranked results and the abstract. There is a substantial reduction in time and effort for literature review compared to traditional methods, establishing our toolkit as an efficient alternative. Our project page including the demo and toolkit can be accessed here: https://litllm.github.io
- Abstract(参考訳): 学術論文の文献レビューの実施は、研究、その限界、および既存の研究に基づく構築を理解するために不可欠である。
自動文献レビュージェネレータをアピールするのは面倒な作業である。
残念なことに、LLM(Large Language Models)を使ったレビューを生成する既存の作業には、重大な制限がある。
彼らは、非事実情報を幻覚させる傾向があり、訓練されていない最新の研究を無視します。
これらの制約に対処するために,LLMの助けを借りて,特殊的なプロンプトと指導を行うRAG(Retrieval Augmented Generation)の原則に基づくツールキットを提案する。
提案システムでは,まず,既製のLLMを用いてユーザが提供する抽象文をキーワードに要約することで,関連論文を検索するWeb検索を開始する。
著者は、関連する論文やキーワードを補足することで検索を強化し、適切な検索プロセスに寄与することができる。
第2に、ユーザが提供する抽象化に基づいて、検索した論文を再ランクする。
最後に、再ランクされた結果と要約に基づいて、関連する作業部を生成する。
従来の手法と比較して、文献レビューの時間と労力が大幅に削減され、ツールキットを効率的な代替手段として確立しました。
デモやツールキットを含む私たちのプロジェクトページは、ここでアクセスできます。
関連論文リスト
- LLMs for Literature Review: Are we there yet? [15.785989492351684]
本稿では,近年の大規模言語モデルのゼロショット能力について,要約に基づく文献レビューの執筆支援について考察する。
まず LLM を用いて,論文の要約から意味のあるキーワードを抽出する新しい2段階探索手法を提案する。
生成段階では、まずレビューの計画を概説し、次に実際のレビューを生成するためのステップを実行する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2024-12-15T01:12:26Z) - PROMPTHEUS: A Human-Centered Pipeline to Streamline SLRs with LLMs [0.0]
PROMPTHEUSは、システム文学レビューのためのAI駆動パイプラインソリューションである。
システム検索、データ抽出、トピックモデリング、要約など、SLRプロセスの重要な段階を自動化する。
高い精度を実現し、一貫性のあるトピック組織を提供し、レビュー時間を短縮します。
論文 参考訳(メタデータ) (2024-10-21T13:05:33Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
論文 参考訳(メタデータ) (2024-07-19T02:48:54Z) - UMBRELA: UMbrela is the (Open-Source Reproduction of the) Bing RELevance Assessor [51.20527342770299]
UMBRELAはオープンソースツールキットで、OpenAIのGPT-4oモデルを使ってThomasらの結果を再現する。
我々のツールキットは、容易に研究できるように設計されており、既存の多段階検索および評価パイプラインに統合することができる。
UMBRELAはTREC 2024RAGトラックで、関連性評価を支援するために使用される。
論文 参考訳(メタデータ) (2024-06-10T17:58:29Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
我々はReinforced Retrieval Augmented Machine Learning (RRAML)と呼ばれる新しいフレームワークを提案する。
RRAMLは、大規模な言語モデルの推論機能と、巨大なユーザが提供するデータベースから目的に構築された検索者によって取得された情報を統合する。
この論文で概説された研究課題は、AIの分野に大きな影響を与える可能性があると信じている。
論文 参考訳(メタデータ) (2023-07-24T13:51:19Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - Active Retrieval Augmented Generation [123.68874416084499]
外部知識資源から情報を取得することで、大きな言語モデル(LM)を拡張することは、有望な解決策である。
ほとんどの既存の検索拡張LMは、入力に基づいて一度だけ情報を検索する検索と生成のセットアップを採用している。
本稿では,将来的な内容を予測するために,文の予測を反復的に利用する汎用手法であるフォワード・フォワード・アクティブ・レトリヴァル・ジェネレーション・ジェネレーション(FLARE)を提案する。
論文 参考訳(メタデータ) (2023-05-11T17:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。