論文の概要: ReXTrust: A Model for Fine-Grained Hallucination Detection in AI-Generated Radiology Reports
- arxiv url: http://arxiv.org/abs/2412.15264v2
- Date: Mon, 30 Dec 2024 16:56:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:03:16.441994
- Title: ReXTrust: A Model for Fine-Grained Hallucination Detection in AI-Generated Radiology Reports
- Title(参考訳): ReXTrust:AI生成放射線診断における微粒化幻覚検出モデル
- Authors: Romain Hardy, Sung Eun Kim, Pranav Rajpurkar,
- Abstract要約: ReXTrustは、AI生成放射線学レポートにおける微細言語幻覚検出のための新しいフレームワークである。
我々はMIMIC-CXRデータセットのサブセット上でReXTrustを評価し,既存手法と比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 2.2392447468912366
- License:
- Abstract: The increasing adoption of AI-generated radiology reports necessitates robust methods for detecting hallucinations--false or unfounded statements that could impact patient care. We present ReXTrust, a novel framework for fine-grained hallucination detection in AI-generated radiology reports. Our approach leverages sequences of hidden states from large vision-language models to produce finding-level hallucination risk scores. We evaluate ReXTrust on a subset of the MIMIC-CXR dataset and demonstrate superior performance compared to existing approaches, achieving an AUROC of 0.8751 across all findings and 0.8963 on clinically significant findings. Our results show that white-box approaches leveraging model hidden states can provide reliable hallucination detection for medical AI systems, potentially improving the safety and reliability of automated radiology reporting.
- Abstract(参考訳): AIが生成する放射線学レポートの採用の増加は、患者に影響を及ぼす可能性のある幻覚を検出する堅牢な方法を必要とする。
ReXTrustは,AI生成放射線学報告における微細な幻覚検出のための新しいフレームワークである。
提案手法は,大規模視覚言語モデルからの隠れ状態のシーケンスを利用して,発見レベルの幻覚リスクスコアを生成する。
我々は,MIMIC-CXRデータセットのサブセット上でReXTrustを評価し,既存のアプローチと比較して優れた性能を示し,すべての結果に対してAUROC0.8751,臨床的に有意な結果に対して0.8963を達成した。
この結果から,医療用AIシステムにおいて,モデル隠れ状態を利用したホワイトボックスアプローチにより,信頼性の高い幻覚検出が可能となり,自動放射線診断の安全性と信頼性が向上する可能性が示唆された。
関連論文リスト
- ICON: Improving Inter-Report Consistency in Radiology Report Generation via Lesion-aware Mixup Augmentation [14.479606737135045]
我々は,放射線学レポート生成のレポート間一貫性を改善するICONを提案する。
まず,入力画像から病変を抽出し,その特徴について検討する。
次に, 意味論的に等価な病変の表現が同一の属性と一致することを確実にするために, 病変認識ミックスアップ手法を導入する。
論文 参考訳(メタデータ) (2024-02-20T09:13:15Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - CXR-LLAVA: a multimodal large language model for interpreting chest
X-ray images [3.0757789554622597]
本研究の目的は,胸部X線画像(CXR)を解釈するためのオープンソースのマルチモーダル大言語モデル(CXR-LLAVA)を開発することである。
トレーニングでは,592,580個のCXRを収集し,そのうち374,881個のX線写真異常のラベルが得られた。
主な病理所見に対する診断成績と,ヒト放射線技師による放射線学的報告の受容性について検討した。
論文 参考訳(メタデータ) (2023-10-22T06:22:37Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Confidence-Guided Radiology Report Generation [24.714303916431078]
本稿では,放射線学レポート作成作業における視覚的不確実性とテキスト的不確実性の両方を定量化する手法を提案する。
実験結果から, モデル不確実性評価と推定のための提案手法が, ラジオロジーレポート生成の信頼性向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-06-21T07:02:12Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Improving Factual Completeness and Consistency of Image-to-Text
Radiology Report Generation [26.846912996765447]
我々は,事実的完全かつ一貫した放射線学報告の創出を促進するために,新たな2つの簡単な報奨制度を導入する。
私たちのシステムでは,ベースラインよりも現実的に完全で一貫性のある世代が生まれることが示されています。
論文 参考訳(メタデータ) (2020-10-20T05:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。