論文の概要: Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language Models
- arxiv url: http://arxiv.org/abs/2412.15287v1
- Date: Wed, 18 Dec 2024 20:43:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:47.911248
- Title: Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるベストオブNサンプリングのための推論対応ファインチューニング
- Authors: Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier, Rishabh Agarwal, Aviral Kumar, Aleksandra Faust,
- Abstract要約: 本稿では,推論時戦略の性能を直接最適化する手法により,モデルが微調整される,推論対応のファインチューニングパラダイムを提案する。
筆者らは,BoN内における困難で微分不可能なargmax演算子を克服し,BoN対応微調整のための最初の模倣学習と強化学習(RL)手法を考案した。
提案実験では,BoNを意識した微調整の有効性を,性能向上と推論時間計算の両面で実証した。
- 参考スコア(独自算出の注目度): 80.65242356955231
- License:
- Abstract: Recent studies have indicated that effectively utilizing inference-time compute is crucial for attaining better performance from large language models (LLMs). In this work, we propose a novel inference-aware fine-tuning paradigm, in which the model is fine-tuned in a manner that directly optimizes the performance of the inference-time strategy. We study this paradigm using the simple yet effective Best-of-N (BoN) inference strategy, in which a verifier selects the best out of a set of LLM-generated responses. We devise the first imitation learning and reinforcement learning~(RL) methods for BoN-aware fine-tuning, overcoming the challenging, non-differentiable argmax operator within BoN. We empirically demonstrate that our BoN-aware models implicitly learn a meta-strategy that interleaves best responses with more diverse responses that might be better suited to a test-time input -- a process reminiscent of the exploration-exploitation trade-off in RL. Our experiments demonstrate the effectiveness of BoN-aware fine-tuning in terms of improved performance and inference-time compute. In particular, we show that our methods improve the Bo32 performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%, and pass@32 from 60.0% to 67.0%, as well as the pass@16 on HumanEval from 61.6% to 67.1%.
- Abstract(参考訳): 近年の研究では、大規模言語モデル(LLM)からより優れた性能を得るためには、推論時計算を効果的に活用することが重要であることが示されている。
本研究では,推論時戦略の性能を直接最適化する手法により,モデルが微調整される,推論対応のファインチューニングパラダイムを提案する。
本稿では,LLM生成応答の集合からベストを検証器が選択する単純なBest-of-N(BoN)推論戦略を用いて,このパラダイムを考察する。
我々は,BoN内の困難で微分不可能なargmax演算子を克服し,BoNを意識したファインチューニングのための最初の模倣学習と強化学習(RL)手法を考案した。
私たちは、我々のBoN対応モデルが、RLにおける探索と探索のトレードオフを思い起こさせるプロセスであるテストタイムインプットに最も適した、より多様なレスポンスで、最高のレスポンスをインターリーブするメタストラテジーを暗黙的に学習していることを実証的に示しています。
提案実験では,BoNを意識した微調整の有効性を,性能向上と推論時間計算の両面で実証した。
具体的には,Hendrycks MATH上のGemma 2BのBo32性能を26.8%から30.8%,pass@32を60.0%から67.0%,pass@16を61.6%から67.1%に改善した。
関連論文リスト
- The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [64.36534512742736]
モデル推論能力向上のためのメカニズムとして,テストタイムトレーニング(TTT)の有効性を検討する。
TTTはARCタスクのパフォーマンスを大幅に改善し、ベースとなる微調整モデルと比較して最大6倍の精度向上を実現した。
本研究は,ニューラルネットワークモデルにおける抽象的推論改善の道筋として,明示的な記号探索が唯一の道ではないことを示唆している。
論文 参考訳(メタデータ) (2024-11-11T18:59:45Z) - Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
本稿では,モデル性能をさらに向上させるために,補完的な直接選好学習手法について検討する。
既存の直接選好学習アルゴリズムは、もともとシングルターンチャットタスク用に設計されている。
この文脈に合わせたマルチターン直接選好学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T02:41:04Z) - Crafting Efficient Fine-Tuning Strategies for Large Language Models [2.633490094119608]
200サンプル未満の細調整された大型言語モデル(LLM)は、製品属性抽出タスクにおいて、モデル精度を70%から88%に向上させることができる。
トレーニング時間全体の20%のモデルを評価するベイズハイパーパラメータ最適化法は,最終的なモデル性能と強く相関する。
このアプローチにより、独立したテストセットで評価すると、ベースラインモデルよりも精度が2%向上した。
論文 参考訳(メタデータ) (2024-07-18T21:36:00Z) - Variational Best-of-N Alignment [58.7977683502207]
Best-of-N(Best-of-N)は、言語モデルを人間の好みに合わせるアルゴリズムである。
推論時にBoNが行うことを模倣するために、言語モデルを微調整することを提案する。
我々のアプローチは平均場変分推論に類似しており、従ってそれを変分BoN(vBoN)と呼ぶ。
論文 参考訳(メタデータ) (2024-07-08T15:59:44Z) - Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences [21.5605000515622]
本稿では,大言語モデル(LLM)の学習後,オラクルからの嗜好フィードバックを用いて,モデル自体を反復的に改善する手法について検討する。
提案手法は,理論的な一般化と対照的な学習の単純さと安定性を,一般の選好の最適化からマージする,証明可能かつ効率的なアルゴリズムである。
実験で得られた 7B パラメータ Orca-2.5 モデルは,AlpacaE 2.0 上で 33% の GPT-4-Turbo に対して,初期化モデルに対して 26% (7% から 33%) の絶対ゲインを達成した。
論文 参考訳(メタデータ) (2024-04-04T17:56:41Z) - Migrating Birds Optimization-Based Feature Selection for Text
Classification [0.4915744683251149]
MBO-NBは、多数の特徴を持つテキスト分類における特徴選択問題に対処する新しいアプローチである。
本実験は,MBO-NBが既存技術に比べて機能低下に優れることを示した。
論文 参考訳(メタデータ) (2024-01-04T08:11:03Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - DeBERTa: Decoding-enhanced BERT with Disentangled Attention [119.77305080520718]
2つの新しい手法を用いてBERTモデルとRoBERTaモデルを改善する新しいモデルアーキテクチャDeBERTaを提案する。
これらの手法により,モデル事前学習の効率化と,自然言語理解(NLU)と自然言語生成(NLG)の両方の性能向上が期待できる。
論文 参考訳(メタデータ) (2020-06-05T19:54:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。