Eliciting Causal Abilities in Large Language Models for Reasoning Tasks
- URL: http://arxiv.org/abs/2412.15314v1
- Date: Thu, 19 Dec 2024 17:03:02 GMT
- Title: Eliciting Causal Abilities in Large Language Models for Reasoning Tasks
- Authors: Yajing Wang, Zongwei Luo, Jingzhe Wang, Zhanke Zhou, Yongqiang Chen, Bo Han,
- Abstract summary: We introduce the Self-Causal Instruction Enhancement (SCIE) method, which enables LLMs to generate high-quality, low-quantity observational data.<n>In SCIE, the instructions are treated as the treatment, and textual features are used to process natural language.<n>Our method effectively generates instructions that enhance reasoning performance with reduced training cost of prompts.
- Score: 14.512834333917414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt optimization automatically refines prompting expressions, unlocking the full potential of LLMs in downstream tasks. However, current prompt optimization methods are costly to train and lack sufficient interpretability. This paper proposes enhancing LLMs' reasoning performance by eliciting their causal inference ability from prompting instructions to correct answers. Specifically, we introduce the Self-Causal Instruction Enhancement (SCIE) method, which enables LLMs to generate high-quality, low-quantity observational data, then estimates the causal effect based on these data, and ultimately generates instructions with the optimized causal effect. In SCIE, the instructions are treated as the treatment, and textual features are used to process natural language, establishing causal relationships through treatments between instructions and downstream tasks. Additionally, we propose applying Object-Relational (OR) principles, where the uncovered causal relationships are treated as the inheritable class across task objects, ensuring low-cost reusability. Extensive experiments demonstrate that our method effectively generates instructions that enhance reasoning performance with reduced training cost of prompts, leveraging interpretable textual features to provide actionable insights.
Related papers
- Robustness via Referencing: Defending against Prompt Injection Attacks by Referencing the Executed Instruction [68.6543680065379]
Large language models (LLMs) are vulnerable to prompt injection attacks.
We propose a novel defense method that leverages, rather than suppresses, the instruction-following abilities of LLMs.
arXiv Detail & Related papers (2025-04-29T07:13:53Z) - Identifying and Mitigating the Influence of the Prior Distribution in Large Language Models [9.075759687357204]
We show that large language models (LLMs) sometimes fail to respond appropriately to deterministic tasks.
We use mechanistic interpretability techniques to localize the prior within the LLM and manipulate the extent to which that prior influences its responses.
arXiv Detail & Related papers (2025-04-17T02:00:53Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - On the Loss of Context-awareness in General Instruction Fine-tuning [101.03941308894191]
We investigate the loss of context awareness after supervised fine-tuning.
We find that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning.
We propose a metric to identify context-dependent examples from general instruction fine-tuning datasets.
arXiv Detail & Related papers (2024-11-05T00:16:01Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - PILLOW: Enhancing Efficient Instruction Fine-tuning via Prompt Matching [20.607323649079845]
Low-Rank Adaptation (LoRA) has become a promising alternative to instruction fine-tuning.
PILLOW aims to improve LoRA's performance by a discrimination-based LLM ability.
PILLOW exhibits commensurate performance on various evaluation metrics compared with typical instruction fine-tuning methods.
arXiv Detail & Related papers (2023-12-09T17:38:39Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.