Exploring Machine Learning Engineering for Object Detection and Tracking by Unmanned Aerial Vehicle (UAV)
- URL: http://arxiv.org/abs/2412.15347v1
- Date: Thu, 19 Dec 2024 19:27:31 GMT
- Title: Exploring Machine Learning Engineering for Object Detection and Tracking by Unmanned Aerial Vehicle (UAV)
- Authors: Aneesha Guna, Parth Ganeriwala, Siddhartha Bhattacharyya,
- Abstract summary: This research effort focuses on the development of a machine learning pipeline emphasizing the inclusion of assurance methods with increasing automation.
A new dataset was created by collecting videos of moving object such as Roomba vacuum cleaner, emulating search and rescue (SAR) for indoor environment.
After the refinement of the dataset it was trained on a second YOLOv4 and a Mask R-CNN model, which is deployed on a Parrot Mambo drone to perform real-time object detection and tracking.
- Score: 3.600782980481468
- License:
- Abstract: With the advancement of deep learning methods it is imperative that autonomous systems will increasingly become intelligent with the inclusion of advanced machine learning algorithms to execute a variety of autonomous operations. One such task involves the design and evaluation for a subsystem of the perception system for object detection and tracking. The challenge in the creation of software to solve the task is in discovering the need for a dataset, annotation of the dataset, selection of features, integration and refinement of existing algorithms, while evaluating performance metrics through training and testing. This research effort focuses on the development of a machine learning pipeline emphasizing the inclusion of assurance methods with increasing automation. In the process, a new dataset was created by collecting videos of moving object such as Roomba vacuum cleaner, emulating search and rescue (SAR) for indoor environment. Individual frames were extracted from the videos and labeled using a combination of manual and automated techniques. This annotated dataset was refined for accuracy by initially training it on YOLOv4. After the refinement of the dataset it was trained on a second YOLOv4 and a Mask R-CNN model, which is deployed on a Parrot Mambo drone to perform real-time object detection and tracking. Experimental results demonstrate the effectiveness of the models in accurately detecting and tracking the Roomba across multiple trials, achieving an average loss of 0.1942 and 96% accuracy.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
A model trained on one data modality often fails when tested with a different modality.
We introduce a continual learning algorithm capable of incrementally learning different data modalities.
We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset.
arXiv Detail & Related papers (2024-09-20T09:53:27Z) - Real-Time Object Detection in Occluded Environment with Background
Cluttering Effects Using Deep Learning [0.8192907805418583]
We concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background.
The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset.
The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4.
arXiv Detail & Related papers (2024-01-02T01:30:03Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
This paper discusses how the combination of cameras and machine learning algorithms can achieve the relative navigation task.
The performance of two deep learning-based object detection algorithms, Faster Region-based Convolutional Neural Networks (R-CNN) and You Only Look Once (YOLOv5) is tested.
The paper discusses the path to implementing the feature recognition algorithms and towards integrating them into the spacecraft Guidance Navigation and Control system.
arXiv Detail & Related papers (2023-01-22T04:53:38Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.