LISA: Learning-Integrated Space Partitioning Framework for Traffic Accident Forecasting on Heterogeneous Spatiotemporal Data
- URL: http://arxiv.org/abs/2412.15365v1
- Date: Thu, 19 Dec 2024 19:52:19 GMT
- Title: LISA: Learning-Integrated Space Partitioning Framework for Traffic Accident Forecasting on Heterogeneous Spatiotemporal Data
- Authors: Bang An, Xun Zhou, Amin Vahedian, Nick Street, Jinping Guan, Jun Luo,
- Abstract summary: Traffic accident forecasting is an important task for intelligent transportation management and emergency response systems.
Existing data-driven methods fail to handle the heterogeneous accident patterns over space at different scales.
We propose a novel Learning-Integrated Space Partition Framework (LISA) to simultaneously learn partitions while training models.
- Score: 14.726248469735971
- License:
- Abstract: Traffic accident forecasting is an important task for intelligent transportation management and emergency response systems. However, this problem is challenging due to the spatial heterogeneity of the environment. Existing data-driven methods mostly focus on studying homogeneous areas with limited size (e.g. a single urban area such as New York City) and fail to handle the heterogeneous accident patterns over space at different scales. Recent advances (e.g. spatial ensemble) utilize pre-defined space partitions and learn multiple models to improve prediction accuracy. However, external knowledge is required to define proper space partitions before training models and pre-defined partitions may not necessarily reduce the heterogeneity. To address this issue, we propose a novel Learning-Integrated Space Partition Framework (LISA) to simultaneously learn partitions while training models, where the partitioning process and learning process are integrated in a way that partitioning is guided explicitly by prediction accuracy rather than other factors. Experiments using real-world datasets, demonstrate that our work can capture underlying heterogeneous patterns in a self-guided way and substantially improve baseline networks by an average of 13.0%.
Related papers
- SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
Open data is frequently released spatially aggregated, usually to comply with privacy policies. But coarse, heterogeneous aggregations complicate coherent learning and integration for downstream AI/ML systems.
We propose an overarching model named Structurally-Aware Recurrent Network (SARN), which integrates structurally-aware spatial attention layers into the Gated Recurrent Unit (GRU) model.
For scenarios with limited historical training data, we show that a model pre-trained on one city variable can be fine-tuned for another city variable using only a few hundred samples.
arXiv Detail & Related papers (2023-06-09T21:01:29Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Relative representations enable zero-shot latent space communication [19.144630518400604]
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations.
We show how neural architectures can leverage these relative representations to guarantee, in practice, latent isometry invariance.
arXiv Detail & Related papers (2022-09-30T12:37:03Z) - Unsupervised Space Partitioning for Nearest Neighbor Search [6.516813715425121]
We propose an end-to-end learning framework that couples the partitioning and learning-to-search steps using a custom loss function.
A key advantage of our proposed solution is that it does not require any expensive pre-processing of the dataset.
We show that our method beats the state-of-the-art space partitioning method and the ubiquitous K-means clustering method.
arXiv Detail & Related papers (2022-06-16T11:17:03Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - HintNet: Hierarchical Knowledge Transfer Networks for Traffic Accident
Forecasting on Heterogeneous Spatio-Temporal Data [17.345649325770957]
Traffic accident forecasting is a significant problem for transportation management and public safety.
The occurrence of traffic accidents is affected by complex dependencies among spatial and temporal features.
Recent traffic accident prediction methods have attempted to use deep learning models to improve accuracy.
arXiv Detail & Related papers (2022-03-07T02:11:04Z) - Smoothing the Generative Latent Space with Mixup-based Distance Learning [32.838539968751924]
We consider the situation where neither large scale dataset of our interest nor transferable source dataset is available.
We propose latent mixup-based distance regularization on the feature space of both a generator and the counterpart discriminator.
arXiv Detail & Related papers (2021-11-23T06:39:50Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Partition-Guided GANs [63.980473635585234]
We design a partitioner that breaks the space into smaller regions, each having a simpler distribution, and training a different generator for each partition.
This is done in an unsupervised manner without requiring any labels.
Experimental results on various standard benchmarks show that the proposed unsupervised model outperforms several recent methods.
arXiv Detail & Related papers (2021-04-02T00:06:53Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder.
We use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not.
Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique.
arXiv Detail & Related papers (2020-10-19T01:27:21Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.