論文の概要: Automatic Extraction of Metaphoric Analogies from Literary Texts: Task Formulation, Dataset Construction, and Evaluation
- arxiv url: http://arxiv.org/abs/2412.15375v1
- Date: Thu, 19 Dec 2024 20:11:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:22.288164
- Title: Automatic Extraction of Metaphoric Analogies from Literary Texts: Task Formulation, Dataset Construction, and Evaluation
- Title(参考訳): リテラリーテキストからのメタフォリックアナロジーの自動抽出:タスクの定式化、データセットの構築、評価
- Authors: Joanne Boisson, Zara Siddique, Hsuvas Borkakoty, Dimosthenis Antypas, Luis Espinosa Anke, Jose Camacho-Collados,
- Abstract要約: 本研究は,文学テキストにおける比喩的類推を形成する概念の抽出に焦点を当てた。
ドメインの専門家の助けを借りて、このドメインに新しいデータセットを構築します。
我々は近年の大規模言語モデルのアウト・オブ・ボックス能力とメタファマッピングの構成を比較した。
- 参考スコア(独自算出の注目度): 13.748219100529955
- License:
- Abstract: Extracting metaphors and analogies from free text requires high-level reasoning abilities such as abstraction and language understanding. Our study focuses on the extraction of the concepts that form metaphoric analogies in literary texts. To this end, we construct a novel dataset in this domain with the help of domain experts. We compare the out-of-the-box ability of recent large language models (LLMs) to structure metaphoric mappings from fragments of texts containing proportional analogies. The models are further evaluated on the generation of implicit elements of the analogy, which are indirectly suggested in the texts and inferred by human readers. The competitive results obtained by LLMs in our experiments are encouraging and open up new avenues such as automatically extracting analogies and metaphors from text instead of investing resources in domain experts to manually label data.
- Abstract(参考訳): フリーテキストからメタファやアナロジーを抽出するには、抽象化や言語理解といった高度な推論能力が必要である。
本研究は,文文の比喩的類推を形成する概念の抽出に焦点をあてる。
この目的のために、ドメインの専門家の助けを借りて、このドメインに新しいデータセットを構築します。
近年の大規模言語モデル(LLM)のアウト・オブ・ボックス能力と比例類推を含むテキストの断片からメタファマッピングを構築することを比較した。
モデルは、テキストに間接的に提案され、人間の読者によって推測されるアナロジーの暗黙的な要素の生成について、さらに評価される。
LLMが実験で得た競争力は、ドメインの専門家が手動でデータをラベル付けする代わりに、テキストからアナロジーやメタファを自動的に抽出するといった新しい手法を奨励し、開放しています。
関連論文リスト
- Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding [72.38872974837462]
大規模ストーリーレベルの類似語コーパスを構築することにより,類似語を識別・生成する能力を評価する。
textscStory Analogyには、さまざまなドメインから24Kストーリーペアが含まれており、拡張された構造マッピング理論の2つの類似点に人間のアノテーションがある。
我々は、textscStory Analogyのデータは、大言語モデルにおけるアナログ生成の品質を向上させることができることを観察した。
論文 参考訳(メタデータ) (2023-10-19T16:29:23Z) - ContrastWSD: Enhancing Metaphor Detection with Word Sense Disambiguation Following the Metaphor Identification Procedure [1.03590082373586]
メタファー識別法(MIP)と単語センス曖昧化(WSD)を統合したRoBERTaを用いたメタファメタメタファ検出モデルを提案する。
WSDモデルから派生した単語感覚を利用することで、メタファ検出プロセスを強化し、他の手法より優れる。
我々は,様々なベンチマークデータセットに対するアプローチを評価し,それを強力なベースラインと比較し,メタファ検出の促進効果を示す。
論文 参考訳(メタデータ) (2023-09-06T15:41:38Z) - Why Do We Need Neuro-symbolic AI to Model Pragmatic Analogies? [6.8107181513711055]
知性の目印は、慣れ親しんだドメインを使用して、アナログ推論として知られる、あまり親しみのないドメインについての推論を行う能力である。
語彙的類推,構文的類推,意味的類推,実用的類推の4つの異なるレベルにおける類推について論じる。
我々は、統計とシンボルAIを組み合わせたニューロシンボリックAI技術を採用し、構造化されていないテキストの表現を通知し、関連コンテンツを強調し、拡張し、抽象化を提供し、マッピングプロセスを導く。
論文 参考訳(メタデータ) (2023-08-02T21:13:38Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Beneath Surface Similarity: Large Language Models Make Reasonable
Scientific Analogies after Structure Abduction [46.2032673640788]
人間の認知における類推的推論の不可欠な役割は、共用関係構造を通して親しみやすい概念とリンクすることで、新しい概念を把握できることである。
この研究は、Large Language Models (LLM) がこれらの類似の基盤となる構造をしばしば見落としていることを示唆している。
本稿では,2つのシステム間の類似性を形成する構造を導出するための,認知心理学に基づく類推的構造推論の課題を紹介する。
論文 参考訳(メタデータ) (2023-05-22T03:04:06Z) - Description-Based Text Similarity [59.552704474862004]
我々は、その内容の抽象的な記述に基づいて、テキストを検索する必要性を特定する。
そこで本研究では,近隣の標準探索で使用する場合の精度を大幅に向上する代替モデルを提案する。
論文 参考訳(メタデータ) (2023-05-21T17:14:31Z) - Scientific and Creative Analogies in Pretrained Language Models [24.86477727507679]
本稿では,BERT や GPT-2 などの大規模事前学習言語モデルにおけるアナログの符号化について検討する。
我々は,複数の属性の体系的マッピングと異種ドメイン間の関係構造を含む新しいアナロジーデータセットであるScientific and Creative Analogy dataset(SCAN)を紹介する。
現状のLMはこれらの複雑なアナロジータスクにおいて低性能を実現し、アナロジー理解によってもたらされる課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2022-11-28T12:49:44Z) - Life is a Circus and We are the Clowns: Automatically Finding Analogies
between Situations and Processes [12.8252101640812]
多くの研究が、新しいドメインに適応できる非脆性システムにとって、アナログが鍵であることを示唆している。
アナロジーの重要性にもかかわらず、NLPコミュニティではほとんど注目されなかった。
論文 参考訳(メタデータ) (2022-10-21T18:54:17Z) - Improve Discourse Dependency Parsing with Contextualized Representations [28.916249926065273]
本稿では,異なるレベルの単位の文脈化表現を符号化するトランスフォーマーの活用を提案する。
記事間で共通に共有される記述パターンの観察に動機付けられ,談話関係の識別をシーケンスラベリングタスクとして扱う新しい手法を提案する。
論文 参考訳(メタデータ) (2022-05-04T14:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。