論文の概要: SemDP: Semantic-level Differential Privacy Protection for Face Datasets
- arxiv url: http://arxiv.org/abs/2412.15590v1
- Date: Fri, 20 Dec 2024 06:00:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:20:56.723059
- Title: SemDP: Semantic-level Differential Privacy Protection for Face Datasets
- Title(参考訳): SemDP: 顔データセットのセマンティックレベルの差分プライバシー保護
- Authors: Xiaoting Zhang, Tao Wang, Junhao Ji,
- Abstract要約: 顔データセット全体に適用可能な意味レベル差分プライバシー保護スキームを提案する。
まず、顔データセットから意味情報を抽出して属性データベースを構築し、その属性データを隠蔽するために差動摂動を適用し、最後に画像モデルを用いて保護された顔データセットを生成する。
- 参考スコア(独自算出の注目度): 4.694266441149191
- License:
- Abstract: While large-scale face datasets have advanced deep learning-based face analysis, they also raise privacy concerns due to the sensitive personal information they contain. Recent schemes have implemented differential privacy to protect face datasets. However, these schemes generally treat each image as a separate database, which does not fully meet the core requirements of differential privacy. In this paper, we propose a semantic-level differential privacy protection scheme that applies to the entire face dataset. Unlike pixel-level differential privacy approaches, our scheme guarantees that semantic privacy in faces is not compromised. The key idea is to convert unstructured data into structured data to enable the application of differential privacy. Specifically, we first extract semantic information from the face dataset to build an attribute database, then apply differential perturbations to obscure this attribute data, and finally use an image synthesis model to generate a protected face dataset. Extensive experimental results show that our scheme can maintain visual naturalness and balance the privacy-utility trade-off compared to the mainstream schemes.
- Abstract(参考訳): 大規模な顔データセットには、高度なディープラーニングベースの顔分析があるが、機密性の高い個人情報を含むため、プライバシー上の懸念も高めている。
最近のスキームでは、顔データセットを保護するために差分プライバシーを実装している。
しかしながら、これらのスキームは一般的に、各イメージを独立したデータベースとして扱い、差分プライバシーのコア要件を完全に満たさない。
本稿では,顔データセット全体に適用可能な意味レベル差分プライバシー保護手法を提案する。
ピクセルレベルの差分プライバシーアプローチとは異なり、我々のスキームは顔のセマンティックプライバシーが侵害されないことを保証します。
鍵となる考え方は、非構造化データを構造化データに変換して、差分プライバシーの適用を可能にすることである。
具体的には、まず顔データセットから意味情報を抽出し、属性データベースを構築し、その属性データを隠蔽するために差動摂動を適用し、最後に画像合成モデルを用いて保護された顔データセットを生成する。
広範にわたる実験結果から,本手法は視覚的自然性を維持し,プライバシ・ユーティリティ・トレードオフのバランスをとることができることが示された。
関連論文リスト
- Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
プライバシを保存するコンピュータビジョンは、機械学習と人工知能において重要な問題である。
本稿では,ビデオデータセット中の感性のある被験者を文脈内の合成アバターに置き換える匿名化パイプラインを提案する。
また、匿名化されていないがプライバシーに敏感な背景情報を保護するため、MaskDPを提案する。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
この研究は、データ共有とモデル公開の間、画像データのプライバシーを同時に保護する包括的なプライバシー保護フレームワークのパイオニアだ。
本稿では、生成機械学習モデルを用いて属性レベルで画像情報を修正するインタラクティブな画像プライバシー保護フレームワークを提案する。
本フレームワークでは、画像中の属性情報を保護する差分プライバシー拡散モデルと、修正された画像データセット上でトレーニングされたモデルの効率的な更新を行う特徴未学習アルゴリズムの2つのモジュールをインスタンス化する。
論文 参考訳(メタデータ) (2024-09-05T07:55:55Z) - Personalized Differential Privacy for Ridge Regression [3.4751583941317166]
我々はPDP-OP(Personalized-DP Output Perturbation Method)を導入し、データポイントごとのプライバシレベルに応じてリッジ回帰モデルのトレーニングを可能にする。
我々は、PDP-OPの厳密なプライバシー証明と、結果モデルの正確性を保証する。
我々はPDP-OPがJorgensenらのパーソナライズされたプライバシー技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-30T16:00:14Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。