論文の概要: Machine Learning Techniques for Pattern Recognition in High-Dimensional Data Mining
- arxiv url: http://arxiv.org/abs/2412.15593v1
- Date: Fri, 20 Dec 2024 06:32:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:36.972938
- Title: Machine Learning Techniques for Pattern Recognition in High-Dimensional Data Mining
- Title(参考訳): 高次元データマイニングにおけるパターン認識のための機械学習技術
- Authors: Pochun Li,
- Abstract要約: 本稿では,サポートベクトルマシン(SVM)に基づく頻繁なパターンデータマイニングアルゴリズムを提案する。
頻繁なパターンマイニングタスクを分類問題に変換することにより、SVMモデルを導入し、パターン抽出の精度と堅牢性を向上させる。
実験により、SVMモデルは、高いデータ空間と多数のトランザクションを持つ環境において、優れたパフォーマンス上のアドバンテージを持つことが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper proposes a frequent pattern data mining algorithm based on support vector machine (SVM), aiming to solve the performance bottleneck of traditional frequent pattern mining algorithms in high-dimensional and sparse data environments. By converting the frequent pattern mining task into a classification problem, the SVM model is introduced to improve the accuracy and robustness of pattern extraction. In terms of method design, the kernel function is used to map the data to a high-dimensional feature space, so as to construct the optimal classification hyperplane, realize the nonlinear separation of patterns and the accurate mining of frequent items. In the experiment, two public datasets, Retail and Mushroom, were selected to compare and analyze the proposed algorithm with traditional FP-Growth, FP-Tree, decision tree and random forest models. The experimental results show that the algorithm in this paper is significantly better than the traditional model in terms of three key indicators: support, confidence and lift, showing strong pattern recognition ability and rule extraction effect. The study shows that the SVM model has excellent performance advantages in an environment with high data sparsity and a large number of transactions, and can effectively cope with complex pattern mining tasks. At the same time, this paper also points out the potential direction of future research, including the introduction of deep learning and ensemble learning frameworks to further improve the scalability and adaptability of the algorithm. This research not only provides a new idea for frequent pattern mining, but also provides important technical support for solving pattern discovery and association rule mining problems in practical applications.
- Abstract(参考訳): 本稿では,SVM(Support Vector Machine)に基づく頻繁なパターンデータマイニングアルゴリズムを提案し,高次元およびスパースなデータ環境における従来の頻繁なパターンマイニングアルゴリズムの性能ボトルネックを解決することを目的とした。
頻繁なパターンマイニングタスクを分類問題に変換することにより、SVMモデルを導入し、パターン抽出の精度と堅牢性を向上させる。
手法設計においては、カーネル関数を用いてデータを高次元の特徴空間にマッピングし、最適な分類超平面を構築し、パターンの非線形分離と頻繁な項目の正確なマイニングを実現する。
実験では、提案アルゴリズムを従来のFP-Growth、FP-Tree、決定木、ランダム森林モデルと比較、分析するために、RetailとMushroomという2つの公開データセットが選択された。
実験結果から, 従来のモデルに比べて, 支持, 信頼, 昇降の3つの重要な指標として, 強いパターン認識能力, 規則抽出効果を示すことが示唆された。
本研究は,SVMモデルが高データ空間と多数のトランザクションを持つ環境において優れた性能上の優位性を示し,複雑なパターンマイニングタスクに効果的に対処できることを示した。
同時に,アルゴリズムのスケーラビリティと適応性をさらに向上させるために,ディープラーニングとアンサンブル学習フレームワークの導入など,今後の研究の方向性も指摘している。
この研究は、頻繁なパターンマイニングのための新しいアイデアを提供するだけでなく、パターン発見と関連ルールマイニング問題を解決するための重要な技術支援も提供する。
関連論文リスト
- Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Principled and Efficient Motif Finding for Structure Learning of Lifted
Graphical Models [5.317624228510748]
構造学習は、ニューロシンボリックAIと統計リレーショナル学習の分野の中心となるAIの中核的な問題である。
昇降型グラフィカルモデルにおける構造モチーフのマイニングのための第一原理的アプローチを提案する。
我々は,最先端構造学習の手法を,精度で最大6%,実行時の最大80%で上回ることを示す。
論文 参考訳(メタデータ) (2023-02-09T12:21:55Z) - Towards Target High-Utility Itemsets [2.824395407508717]
応用インテリジェンスでは、ユーティリティ駆動型パターン探索アルゴリズムは、データベースの洞察力と有用なパターンを識別することができる。
重要な研究課題として、ターゲットとした高ユーティリティアイテムセットマイニングが登場している。
本稿では,マイニングプロセス中に高ユーティリティなアイテムセットを迅速にマッチングしてターゲットパターンを選択することができるTHUIMを提案する。
論文 参考訳(メタデータ) (2022-06-09T18:42:58Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
コルモゴロフモデル(コルモゴロフモデル、英: Kolmogorov model、KM)は、確率変数の集合の基本的な確率構造を学ぶための解釈可能で予測可能な表現手法である。
正規化双対最適化と拡張勾配降下法(GD)を併用した計算スケーラブルなKM学習アルゴリズムを提案する。
提案したKM学習アルゴリズムを用いた論理的関係マイニングの精度は80%以上である。
論文 参考訳(メタデータ) (2021-07-11T10:33:02Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Bayesian graph convolutional neural networks via tempered MCMC [0.41998444721319217]
畳み込みニューラルネットワークのようなディープラーニングモデルは、画像やマルチメディアタスクに長い間適用されてきた。
最近では、グラフで表現できる非構造化データにもっと注意が払われている。
これらのタイプのデータは、健康と医学、ソーシャルネットワーク、および研究データリポジトリでよく見られます。
論文 参考訳(メタデータ) (2021-04-17T04:03:25Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Netは、Voxelizationなしで大規模ポイントクラウドを理解するための一般的なディープラーニングフレームワークです。
相関型特徴マイニングと変形性畳み込みに基づく幾何認識モデルを用いた深層畳み込みニューラルネットワークを提案する。
我々のアプローチは精度と効率の点で最先端のアプローチを上回っている。
論文 参考訳(メタデータ) (2020-12-17T08:20:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。