論文の概要: Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.15639v1
- Date: Fri, 20 Dec 2024 07:55:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:08.391562
- Title: Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning
- Title(参考訳): 協調型マルチエージェント強化学習のための適応情報選択による暗黙学習
- Authors: Lunjun Liu, Weilai Jiang, Yaonan Wang,
- Abstract要約: 本稿では,情報選択と暗黙学習に基づく新しい協調型MARLフレームワークを提案する。
我々はゲーティングと選択機構を統合し、エージェントが環境変化に基づいて情報を適応的にフィルタリングできるようにする。
人気のあるMARLベンチマークの実験により、我々のフレームワークは最先端のアルゴリズムとシームレスに統合できることが示された。
- 参考スコア(独自算出の注目度): 13.918498667158119
- License:
- Abstract: In multi-agent reinforcement learning (MARL), the centralized training with decentralized execution (CTDE) framework has gained widespread adoption due to its strong performance. However, the further development of CTDE faces two key challenges. First, agents struggle to autonomously assess the relevance of input information for cooperative tasks, impairing their decision-making abilities. Second, in communication-limited scenarios with partial observability, agents are unable to access global information, restricting their ability to collaborate effectively from a global perspective. To address these challenges, we introduce a novel cooperative MARL framework based on information selection and tacit learning. In this framework, agents gradually develop implicit coordination during training, enabling them to infer the cooperative behavior of others in a discrete space without communication, relying solely on local information. Moreover, we integrate gating and selection mechanisms, allowing agents to adaptively filter information based on environmental changes, thereby enhancing their decision-making capabilities. Experiments on popular MARL benchmarks show that our framework can be seamlessly integrated with state-of-the-art algorithms, leading to significant performance improvements.
- Abstract(参考訳): マルチエージェント強化学習(MARL)では、分散実行(CTDE)フレームワークによる集中型トレーニングが、高い性能で広く採用されている。
しかし、CTDEのさらなる発展は2つの大きな課題に直面している。
まず、エージェントは、協調作業における入力情報の関連性を自律的に評価し、意思決定能力を損なう。
第二に、部分的な可観測性を持つ通信制限シナリオでは、エージェントはグローバル情報にアクセスできず、グローバルの観点から効果的に協力する能力を制限する。
これらの課題に対処するために,情報選択と暗黙学習に基づく新しい協調型MARLフレームワークを提案する。
この枠組みでは、エージェントは訓練中に徐々に暗黙の協調を発達させ、コミュニケーションをせずに、ローカル情報にのみ依存して、離散空間における他人の協調行動を予測することができる。
さらに,ゲーティングと選択機構を統合し,エージェントが環境変化に基づいて情報を適応的にフィルタリングし,意思決定能力を向上させる。
一般的なMARLベンチマークの実験では、我々のフレームワークが最先端のアルゴリズムとシームレスに統合できることが示され、性能が大幅に向上した。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Attention-Driven Multi-Agent Reinforcement Learning: Enhancing Decisions with Expertise-Informed Tasks [1.7689232761699216]
我々は,MARL(Multi-Agent Reinforcement Learning)の強化のための代替手法を提案する。
本手法は,ドメイン固有の専門知識を学習プロセスに組み込むことに重点を置いている。
注意に基づくアプローチが,MARLトレーニングプロセスの効率化に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-08T20:06:33Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Is Centralized Training with Decentralized Execution Framework
Centralized Enough for MARL? [27.037348104661497]
分散実行によるトレーニングは、協調的マルチエージェント強化学習のための一般的なフレームワークである。
マルチエージェント強化学習のためのCADP(Advising and Decentralized Pruning)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-27T03:15:24Z) - From Explicit Communication to Tacit Cooperation:A Novel Paradigm for
Cooperative MARL [14.935456456463731]
本稿では,明示的なコミュニケーションから暗黙的な協調への段階的なシフトを促進する新しいパラダイムを提案する。
初期訓練段階では,エージェント間で関連情報を共有することで協力を促進する。
次に、明示的に伝達された情報と再構成された情報を組み合わせて混合情報を得る。
論文 参考訳(メタデータ) (2023-04-28T06:56:07Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
我々は,モデルベース強化学習(MBRL)を用いて協調環境における集中型トレーニングをさらに活用するMAMBAという新しい手法を提案する。
エージェント間のコミュニケーションは、実行期間中に各エージェントのワールドモデルを維持するのに十分であり、一方、仮想ロールアウトはトレーニングに使用でき、環境と対話する必要がなくなる。
論文 参考訳(メタデータ) (2022-05-25T08:35:00Z) - Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming [0.0]
我々は,政策グラディエント(PG)の下での最適化において,エージェントの方針がチームメイトの方針に準じることが,本質的に相互情報(MI)の下限を最大化することを示す。
我々の手法であるInfoPGは、創発的協調行動の学習におけるベースラインを上回り、分散協調型MARLタスクにおける最先端の課題を設定します。
論文 参考訳(メタデータ) (2022-01-20T22:54:32Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
本研究では,3次元環境下で関節を作動させることでコミュニケーションを学ぶエージェントについて検討する。
現実的な仮定、意図の非一様分布、共通知識エネルギーコストにおいて、これらのエージェントは新規パートナーに一般化するプロトコルを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-10-29T19:23:10Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
我々は、シーケンシャルな意思決定問題を解決するために、単純で専門的で自己関心のあるエージェントの社会を指示する枠組みを確立する。
我々は分散強化学習アルゴリズムのクラスを導出する。
我々は、より効率的な移動学習のための社会固有のモジュラー構造の潜在的な利点を実証する。
論文 参考訳(メタデータ) (2020-07-05T16:41:09Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。