論文の概要: Collaborative Learning in Agentic Systems: A Collective AI is Greater Than the Sum of Its Parts
- arxiv url: http://arxiv.org/abs/2506.05577v1
- Date: Thu, 05 Jun 2025 20:38:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.228642
- Title: Collaborative Learning in Agentic Systems: A Collective AI is Greater Than the Sum of Its Parts
- Title(参考訳): エージェントシステムにおける協調学習: 集合的AIはその部分の総和よりも大きい
- Authors: Saptarshi Nath, Christos Peridis, Eseoghene Benjamin, Xinran Liu, Soheil Kolouri, Peter Kinnell, Zexin Li, Cong Liu, Shirin Dora, Andrea Soltoggio,
- Abstract要約: 集合学習(MOSAIC)におけるモジュール共有と構成の導入
MOSAICはエージェントアルゴリズムであり、複数のエージェントが独立して異なるタスクを解くことができる。
一連のRLベンチマークの結果から,MOSAICは孤立学習者よりもサンプル効率が高いことが示された。
- 参考スコア(独自算出の注目度): 12.471774408499817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agentic AI has gained significant interest as a research paradigm focused on autonomy, self-directed learning, and long-term reliability of decision making. Real-world agentic systems operate in decentralized settings on a large set of tasks or data distributions with constraints such as limited bandwidth, asynchronous execution, and the absence of a centralized model or even common objectives. We posit that exploiting previously learned skills, task similarities, and communication capabilities in a collective of agentic AI are challenging but essential elements to enabling scalability, open-endedness, and beneficial collaborative learning dynamics. In this paper, we introduce Modular Sharing and Composition in Collective Learning (MOSAIC), an agentic algorithm that allows multiple agents to independently solve different tasks while also identifying, sharing, and reusing useful machine-learned knowledge, without coordination, synchronization, or centralized control. MOSAIC combines three mechanisms: (1) modular policy composition via neural network masks, (2) cosine similarity estimation using Wasserstein embeddings for knowledge selection, and (3) asynchronous communication and policy integration. Results on a set of RL benchmarks show that MOSAIC has a greater sample efficiency than isolated learners, i.e., it learns significantly faster, and in some cases, finds solutions to tasks that cannot be solved by isolated learners. The collaborative learning and sharing dynamics are also observed to result in the emergence of ideal curricula of tasks, from easy to hard. These findings support the case for collaborative learning in agentic systems to achieve better and continuously evolving performance both at the individual and collective levels.
- Abstract(参考訳): エージェントAIは、自律性、自己指向学習、意思決定の長期的な信頼性に焦点を当てた研究パラダイムとして、大きな関心を集めている。
現実世界のエージェントシステムは、帯域幅の制限や非同期実行、集中型モデルや一般的な目的の欠如といった制約により、タスクやデータ分散の大規模なセットで分散化された設定で動作する。
我々は、エージェントAIの集合体において、以前に学んだスキル、タスク類似性、コミュニケーション能力を活用することは、スケーラビリティ、オープンエンドネス、有益な協調学習のダイナミクスを実現する上で、難しいが必須の要素である、と仮定する。
本稿では,複数のエージェントが協調,同期,集中制御なしに,有用な機械学習知識を識別,共有,再利用しながら,異なるタスクを独立して解くことができるエージェントアルゴリズムMOSAICを提案する。
MOSAICは,(1)ニューラルネットワークマスクによるモジュラポリシ構成,(2)知識選択のためのWasserstein埋め込みを用いたコサイン類似度推定,(3)非同期通信とポリシ統合の3つのメカニズムを組み合わせる。
一連のRLベンチマークの結果から、MOSAICは独立した学習者よりもサンプル効率が高いこと、すなわち、学習が大幅に速くなり、場合によっては、独立した学習者によって解決できない課題に対する解決策を見出すことができる。
協調的な学習と共有のダイナミクスもまた、簡単なものから難しいものまで、タスクの理想的なカリキュラムの出現をもたらす。
これらの知見は, エージェントシステムにおける協調学習が, 個人レベルと集団レベルの両方において, より良く, 継続的に進化する性能を達成する上で有効である。
関連論文リスト
- Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
マルチエージェント・クロスタスク体験学習(MAEL)は,LSM駆動型エージェントに明示的なクロスタスク学習と経験蓄積を付与する新しいフレームワークである。
経験的学習フェーズでは、タスク解決ワークフローの各ステップの品質を定量化し、その結果の報酬を記憶する。
推論中、エージェントは、各推論ステップの有効性を高めるために、いくつかの例として、高頻度のタスク関連体験を検索する。
論文 参考訳(メタデータ) (2025-05-29T07:24:37Z) - Contextual Knowledge Sharing in Multi-Agent Reinforcement Learning with Decentralized Communication and Coordination [0.9776703963093367]
マルチエージェント強化学習(Dec-MARL)は、動的環境における複雑なタスクに対処するための重要なアプローチとして登場した。
本稿では,エージェントの知識共有プロセスに目標認識とタイムアウェアネスを取り入れ,ピアツーピアコミュニケーションとコーディネーションを統合した新しいDec-MARLフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-26T22:49:50Z) - Capability-Aware Shared Hypernetworks for Flexible Heterogeneous Multi-Robot Coordination [2.6590401523087634]
マルチロボットチームのための能力認識共有ハイパーネットワークス(CASH)を提案する。
CASHは、ハイパーネットワークを使用してフレキシブルな共有ポリシを効率的に学習する、ソフトウェイト共有アーキテクチャである。
トレーニングとゼロショットの一般化の両方において、CASHは性能とサンプル効率の点で、ベースラインアーキテクチャを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2025-01-10T15:39:39Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models [1.0742675209112622]
マルチエージェントシステム(MAS)は、人間との協調と協調を必要とする多くのアプリケーションにとって重要である。
一つの大きな課題は、動的環境における独立したエージェントの同時学習と相互作用である。
我々はMulti-Agent IBLモデル(MAIBL)の3つの変種を提案する。
我々は,MAIBLモデルが学習速度を向上し,動的CMOTPタスクにおいて,現在のMADRLモデルと比較して様々な報酬設定でコーディネートを達成できることを実証した。
論文 参考訳(メタデータ) (2023-08-18T00:39:06Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。