A survey on FPGA-based accelerator for ML models
- URL: http://arxiv.org/abs/2412.15666v1
- Date: Fri, 20 Dec 2024 08:30:40 GMT
- Title: A survey on FPGA-based accelerator for ML models
- Authors: Feng Yan, Andreas Koch, Oliver Sinnen,
- Abstract summary: It reviews 287 out of 1138 papers from the past six years, sourced from four top FPGA conferences.<n>Research clearly emphasises inference acceleration (81%) compared to training acceleration (13%)<n>The categorization of the FPGA research papers reveals a wide range of topics, demonstrating the growing relevance of ML in FPGA research.
- Score: 3.4246253618447717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper thoroughly surveys machine learning (ML) algorithms acceleration in hardware accelerators, focusing on Field-Programmable Gate Arrays (FPGAs). It reviews 287 out of 1138 papers from the past six years, sourced from four top FPGA conferences. Such selection underscores the increasing integration of ML and FPGA technologies and their mutual importance in technological advancement. Research clearly emphasises inference acceleration (81\%) compared to training acceleration (13\%). Additionally, the findings reveals that CNN dominates current FPGA acceleration research while emerging models like GNN show obvious growth trends. The categorization of the FPGA research papers reveals a wide range of topics, demonstrating the growing relevance of ML in FPGA research. This comprehensive analysis provides valuable insights into the current trends and future directions of FPGA research in the context of ML applications.
Related papers
- GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.
GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.
It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective [49.613774305350084]
Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks.<n>Recent studies suggest that other components such as non-linear layers may also significantly affect how GNNs process the input graph data in the spectral domain.<n>This paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data.
arXiv Detail & Related papers (2024-12-10T04:53:53Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Embedded FPGA Developments in 130nm and 28nm CMOS for Machine Learning in Particle Detector Readout [0.7367855181841242]
Field programmable gate array (eFPGA) technology allows the implementation of reconfigurable logic within the design of an application-specific integrated circuit (ASIC)
An open-source framework called "FABulous" was used to design eFPGAs using 130 nm and 28 nm CMOS technology nodes.
A machine learning-based classifier, designed for reduction of sensor data at the source, was synthesized and configured onto the eFPGA.
arXiv Detail & Related papers (2024-04-26T20:59:23Z) - Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
Open-source embedded FPGA (eFPGA) frameworks provide an alternate, more flexible pathway for implementing machine learning models in hardware.
We explore the parameter space for eFPGA implementations of fully-connected neural network (fcNN) and boosted decision tree (BDT) models.
The results of the study will be used to aid the specification of an eFPGA fabric, which will be integrated as part of a test chip.
arXiv Detail & Related papers (2024-04-19T20:03:30Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
arXiv Detail & Related papers (2023-12-23T04:27:06Z) - A Survey of Spiking Neural Network Accelerator on FPGA [0.0]
We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations.
Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA.
arXiv Detail & Related papers (2023-07-08T06:02:12Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Optimization of FPGA-based CNN Accelerators Using Metaheuristics [1.854931308524932]
convolutional neural networks (CNNs) have demonstrated their ability to solve problems in many fields.
FPGAs have seen a surge in interest for accelerating CNN inference.
Current trend in FPGA-based CNN accelerators is to implement multiple convolutional layer processors (CLPs)
arXiv Detail & Related papers (2022-09-22T18:57:49Z) - Auto-ViT-Acc: An FPGA-Aware Automatic Acceleration Framework for Vision
Transformer with Mixed-Scheme Quantization [78.18328503396057]
Vision transformers (ViTs) are emerging with significantly improved accuracy in computer vision tasks.
This work proposes an FPGA-aware automatic ViT acceleration framework based on the proposed mixed-scheme quantization.
arXiv Detail & Related papers (2022-08-10T05:54:46Z) - VAQF: Fully Automatic Software-hardware Co-design Framework for Low-bit
Vision Transformer [121.85581713299918]
We propose VAQF, a framework that builds inference accelerators on FPGA platforms for quantized Vision Transformers (ViTs)
Given the model structure and the desired frame rate, VAQF will automatically output the required quantization precision for activations.
This is the first time quantization has been incorporated into ViT acceleration on FPGAs.
arXiv Detail & Related papers (2022-01-17T20:27:52Z) - Benchmarking Graph Neural Networks [75.42159546060509]
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs.
For any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress.
GitHub repository has reached 1,800 stars and 339 forks, which demonstrates the utility of the proposed open-source framework.
arXiv Detail & Related papers (2020-03-02T15:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.