A Survey of Spiking Neural Network Accelerator on FPGA
- URL: http://arxiv.org/abs/2307.03910v1
- Date: Sat, 8 Jul 2023 06:02:12 GMT
- Title: A Survey of Spiking Neural Network Accelerator on FPGA
- Authors: Murat Isik
- Abstract summary: We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations.
Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the ability to implement customized topology, FPGA is increasingly
used to deploy SNNs in both embedded and high-performance applications. In this
paper, we survey state-of-the-art SNN implementations and their applications on
FPGA. We collect the recent widely-used spiking neuron models, network
structures, and signal encoding formats, followed by the enumeration of related
hardware design schemes for FPGA-based SNN implementations. Compared with the
previous surveys, this manuscript enumerates the application instances that
applied the above-mentioned technical schemes in recent research. Based on
that, we discuss the actual acceleration potential of implementing SNN on FPGA.
According to our above discussion, the upcoming trends are discussed in this
paper and give a guideline for further advancement in related subjects.
Related papers
- A survey on FPGA-based accelerator for ML models [3.4246253618447717]
It reviews 287 out of 1138 papers from the past six years, sourced from four top FPGA conferences.
Research clearly emphasises inference acceleration (81%) compared to training acceleration (13%)
The categorization of the FPGA research papers reveals a wide range of topics, demonstrating the growing relevance of ML in FPGA research.
arXiv Detail & Related papers (2024-12-20T08:30:40Z) - Harnessing FPGA Technology for Enhanced Biomedical Computation [0.0]
This research delves into sophisticated neural network frameworks like CNN, Recurrent Neural Networks (RNN), Long Short-Term Memory Networks (LSTMs), and Deep Belief Networks (DBNs)
By evaluating performance indicators like latency and throughput, we showcase the efficacy of FPGAs in advanced biomedical computing.
arXiv Detail & Related papers (2023-11-21T08:51:58Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
arXiv Detail & Related papers (2023-07-16T01:20:17Z) - DGNN-Booster: A Generic FPGA Accelerator Framework For Dynamic Graph
Neural Network Inference [2.2721856484014373]
We propose DGNN-Booster, which is a novel Field-Programmable Gate Array (FPGA) accelerator framework for real-time DGNN inference.
We show that DGNN-Booster can achieve a speedup of up to 5.6x compared to the CPU baseline (6226R), 8.4x compared to the GPU baseline (A6000) and 2.1x compared to the FPGA baseline.
arXiv Detail & Related papers (2023-04-13T21:50:23Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Efficient Compilation and Mapping of Fixed Function Combinational Logic
onto Digital Signal Processors Targeting Neural Network Inference and
Utilizing High-level Synthesis [3.83610794195621]
Recent efforts for improving the performance of neural network (NN) accelerators have given rise to a new trend of logic-based NN inference relying on fixed function combinational logic.
This paper presents an innovative design and optimization methodology for compilation and mapping of NNs, utilizing fixed function combinational logic to DSPs on FPGAs.
arXiv Detail & Related papers (2022-07-30T20:11:59Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z) - Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks [55.98291376393561]
Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
arXiv Detail & Related papers (2020-10-23T19:12:30Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.