論文の概要: Traffic-Rule-Compliant Trajectory Repair via Satisfiability Modulo Theories and Reachability Analysis
- arxiv url: http://arxiv.org/abs/2412.15837v1
- Date: Fri, 20 Dec 2024 12:26:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:23:06.910721
- Title: Traffic-Rule-Compliant Trajectory Repair via Satisfiability Modulo Theories and Reachability Analysis
- Title(参考訳): 満足度モジュロ理論と到達性解析による交通ルール整合軌道修復
- Authors: Yuanfei Lin, Zekun Xing, Xuyuan Han, Matthias Althoff,
- Abstract要約: 自動走行車には、交通規則の遵守が難しい。
時間節約のための軌道補修手法を提案する。
高忠実度シミュレータと実世界の実験は,提案手法の利点を実証している。
- 参考スコア(独自算出の注目度): 6.5301153208275675
- License:
- Abstract: Complying with traffic rules is challenging for automated vehicles, as numerous rules need to be considered simultaneously. If a planned trajectory violates traffic rules, it is common to replan a new trajectory from scratch. We instead propose a trajectory repair technique to save computation time. By coupling satisfiability modulo theories with set-based reachability analysis, we determine if and in what manner the initial trajectory can be repaired. Experiments in high-fidelity simulators and in the real world demonstrate the benefits of our proposed approach in various scenarios. Even in complex environments with intricate rules, we efficiently and reliably repair rule-violating trajectories, enabling automated vehicles to swiftly resume legally safe operation in real-time.
- Abstract(参考訳): 多数のルールを同時に検討する必要があるため、自動走行車には交通規則を補完することは困難である。
計画された軌道が交通規則に違反している場合、スクラッチから新しい軌道を計画することが一般的である。
代わりに,計算時間を短縮する軌道補修手法を提案する。
整合性モジュラー理論と集合ベース到達可能性解析を結合することにより、初期軌道がどの方法で修理できるかを判断する。
高忠実度シミュレータと実世界の実験は,様々なシナリオにおいて提案手法の利点を実証している。
複雑なルールを持つ複雑な環境でも、ルール違反の軌道を効率よく確実に修復し、自動化された車両が高速に法的に安全な運転を再開できるようにする。
関連論文リスト
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
機械学習に基づく自律運転システムは、現実世界のデータでは稀な安全クリティカルなシナリオで課題に直面していることが多い。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
論文 参考訳(メタデータ) (2024-09-12T08:26:33Z) - Provable Traffic Rule Compliance in Safe Reinforcement Learning on the Open Sea [8.017543518311196]
強化学習(Reinforcement Learning, RL)は、自動運転車の運動計画を見つけるための有望な方法である。
提案手法は,時間論理仕様をRLに組み込むことにより,規則遵守の保証を実現する。
重要な海上交通状況に関する数値的な評価では、我々のエージェントは常に形式化された法規に準拠し、決して衝突しない。
論文 参考訳(メタデータ) (2024-02-13T14:59:19Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
軌道計画は、自動運転車のグローバルな最適ルートを作成することを目的としている。
既存の自転車キネマティックモデルを用いた実装では、制御可能な軌道は保証できない。
このモデルを、曲率と長手ジャークの1階および2階微分を含む高階項で拡張する。
論文 参考訳(メタデータ) (2023-09-25T22:30:18Z) - Automated Static Camera Calibration with Intelligent Vehicles [58.908194559319405]
自動ジオレファレンスカメラキャリブレーションのためのロバストキャリブレーション法を提案する。
本手法では, フィルタ/RTK受信機と慣性測定ユニット(IMU)を組み合わせたキャリブレーション車両が必要である。
我々の手法は、インフラと車両の両方で記録された情報と人間との相互作用を一切必要としない。
論文 参考訳(メタデータ) (2023-04-21T08:50:52Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
制御可能で現実的な交通シミュレーションは、自動運転車の開発と検証に不可欠である。
データ駆動アプローチは現実的で人間的な振る舞いを生成し、シミュレートされたトラフィックから現実のトラフィックへの移行を改善する。
本研究では,制御可能なトラヒック生成(CTG)のための条件拡散モデルを構築し,テスト時に所望のトラジェクトリ特性を制御できるようにする。
論文 参考訳(メタデータ) (2022-10-31T14:44:59Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - Optimizing Trajectories for Highway Driving with Offline Reinforcement
Learning [11.970409518725491]
自律運転に対する強化学習に基づくアプローチを提案する。
我々のエージェントの性能を他の4つのハイウェイ運転エージェントと比較する。
ランダムに収集されたデータを持つオフライントレーニングエージェントが、望ましい速度に可能な限り近い速度で、他のエージェントよりも優れた速度で、スムーズに駆動することを学ぶことを実証します。
論文 参考訳(メタデータ) (2022-03-21T13:13:08Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
ミニチュアレースカープラットフォーム上で自律的なレースを行うための強化学習ベースのソリューションを提案する。
シミュレーションで純粋に訓練されたポリシーは、実際のロボットのセットアップにうまく移行できることを示す。
論文 参考訳(メタデータ) (2020-11-26T14:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。