Self-Supervised Radiograph Anatomical Region Classification -- How Clean Is Your Real-World Data?
- URL: http://arxiv.org/abs/2412.15967v1
- Date: Fri, 20 Dec 2024 15:07:55 GMT
- Title: Self-Supervised Radiograph Anatomical Region Classification -- How Clean Is Your Real-World Data?
- Authors: Simon Langer, Jessica Ritter, Rickmer Braren, Daniel Rueckert, Paul Hager,
- Abstract summary: We show the effectiveness of self-supervised methods in assigning one of 14 anatomical region classes in our in-house dataset of 48,434 skeletal radiographs.
We achieve a strong linear evaluation accuracy of 96.6% with a single model and 97.7% using an ensemble approach.
- Score: 10.5757425746568
- License:
- Abstract: Modern deep learning-based clinical imaging workflows rely on accurate labels of the examined anatomical region. Knowing the anatomical region is required to select applicable downstream models and to effectively generate cohorts of high quality data for future medical and machine learning research efforts. However, this information may not be available in externally sourced data or generally contain data entry errors. To address this problem, we show the effectiveness of self-supervised methods such as SimCLR and BYOL as well as supervised contrastive deep learning methods in assigning one of 14 anatomical region classes in our in-house dataset of 48,434 skeletal radiographs. We achieve a strong linear evaluation accuracy of 96.6% with a single model and 97.7% using an ensemble approach. Furthermore, only a few labeled instances (1% of the training set) suffice to achieve an accuracy of 92.2%, enabling usage in low-label and thus low-resource scenarios. Our model can be used to correct data entry mistakes: a follow-up analysis of the test set errors of our best-performing single model by an expert radiologist identified 35% incorrect labels and 11% out-of-domain images. When accounted for, the radiograph anatomical region labelling performance increased -- without and with an ensemble, respectively -- to a theoretical accuracy of 98.0% and 98.8%.
Related papers
- Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
We argue that the reliability of deep learning models is limited, even if they can be shown to obtain perfect classification accuracy on the test data.
We show that pre-training a deep neural network on a large-scale proxy task, as well as using mixed objective optimization network (MOON), can improve the alignment of decision foundations between models and experts.
arXiv Detail & Related papers (2024-07-19T06:41:31Z) - Early prediction of onset of sepsis in Clinical Setting [0.8471078314535754]
A supervised learning approach was adopted, wherein an XGBoost model was trained utilizing 80% of the train dataset.
The model was validated on prospective data that was entirely unseen during the training phase.
The model achieved a normalized utility score of 0.494 on test data and 0.378 on prospective data at threshold 0.3.
arXiv Detail & Related papers (2024-02-05T19:58:40Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Learning to diagnose common thorax diseases on chest radiographs from
radiology reports in Vietnamese [0.33598755777055367]
We propose a data collecting and annotation pipeline that extracts information from Vietnamese radiology reports to provide accurate labels for chest X-ray (CXR) images.
This can benefit Vietnamese radiologists and clinicians by annotating data that closely match their endemic diagnosis categories which may vary from country to country.
arXiv Detail & Related papers (2022-09-11T06:06:03Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Real-World Demonstration of Machine Learning Generalizability:
Intracranial Hemorrhage Detection on Head CT [5.517017976008718]
The purpose of this study was to demonstrate that ML model generalizability is achievable in medical imaging.
An ML model was trained using 21,784 scans from the RSNA Intracranial Hemorrhage CT dataset.
On external validation, the model demonstrated an AUC of 95.4%, sensitivity of 91.3%, and specificity of 94.1%.
arXiv Detail & Related papers (2021-02-09T15:05:48Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
This work presents a Deep Learning method based on the late fusion of different convolutional architectures.
We built four training datasets combining images from public chest x-ray datasets and our institutional archive.
We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool.
arXiv Detail & Related papers (2020-12-23T14:38:35Z) - A Multi-resolution Model for Histopathology Image Classification and
Localization with Multiple Instance Learning [9.36505887990307]
We propose a multi-resolution multiple instance learning model that leverages saliency maps to detect suspicious regions for fine-grained grade prediction.
The model is developed on a large-scale prostate biopsy dataset containing 20,229 slides from 830 patients.
The model achieved 92.7% accuracy, 81.8% Cohen's Kappa for benign, low grade (i.e. Grade group 1) and high grade (i.e. Grade group >= 2) prediction, an area under the receiver operating characteristic curve (AUROC) of 98.2% and an average precision (AP) of 97.4%.
arXiv Detail & Related papers (2020-11-05T06:42:39Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.